首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicle deviation during bovine follicular waves is characterized by continued growth of a developing dominant follicle and reduction or cessation of growth of subordinate follicles. Characteristics of follicle deviation for waves with a single dominant follicle were compared between wave 1 (begins near ovulation; n = 15) and wave 2 (n = 15). Follicles were defined as F1 (largest), F2, and F3, according to maximum diameter. No mean differences were found between waves for follicle diameters at expected deviation (F1, > or =8.5 mm; Hour 0) or observed deviation or in the interval from follicle emergence at 4.0 mm to deviation. For both waves, circulating FSH continued to decrease (P < 0.05) after Hour 0, estradiol began to increase (P < 0.05) at Hour 0, and immunoreactive inhibin began to decrease (P < 0.05) before Hour 0. A transient elevation in circulating LH reached maximum concentration at Hour 0 (P < 0.01) in both waves and was more prominent (P < 0.0001) for wave 1. Waves with codominant follicles (both follicles >10 mm) were more common (P < 0.02) for wave 1 (35%) than for wave 2 (4%). Codominants (n = 6) were associated with more (P < 0.05) follicles > or=4 mm and a greater concentration (P < 0.04) of circulating estradiol at Hours -48 to -8 than were single dominant follicles (n = 15). A mean transient increase in FSH and LH occurred in the codominant group at Hour -24 and may have interfered with deviation of F2. In codominant waves, deviation of F3 occurred near Hour 0 (F1, approximately 8.5 mm). A second deviation involving F2 occurred in four of six waves a mean of 50 h after the F3 deviation and may have resulted from a greater suppression (P < 0.05) of FSH in the codominant group after Hour 0. In conclusion, follicle or hormone differences were similar for waves 1 and 2, indicating that the deviation mechanisms were the same for both waves. Waves that developed codominant follicles differed in hormone as well as follicle dynamics.  相似文献   

2.
A few days after the first follicular wave emerges as 4-mm follicles, follicular deviation occurs wherein 1 follicle of the wave continues to grow (dominant follicle) while the others regress. The objectives of this study were to characterize follicle growth and associated changes in systemic concentrations of gonadotropins and estradiol at 8-h intervals encompassing the time of follicle deviation. Blood samples from heifers (n = 11) were collected and the ovaries scanned by ultrasound every 8 h from 48 h before to 112 h after the maximal value for the preovulatory LH surge. The follicular wave emerged at 5.8 +/- 5.5 h (mean +/- SEM) after the LH surge, and at this time the future dominant follicle (4.2 +/- 0.8 mm) was larger (P < 0.001) than the future largest subordinate follicle (3.6 +/- 0.1 mm). There was no difference in growth rates between the 2 follicles from emergence to the beginning of the deviation (0.5 mm/8 h for each follicle), indicating that, on average, the future dominant follicle maintained a size advantage over the future subordinate follicle. Deviation occurred when the 2 largest follicles were 8.3 +/- 0.2 and 7.8 +/- 0.2 mm in diameter, at 61.0 +/- 3.7 h after wave emergence. Diameter deviation was manifested between 2 adjacent examinations at 8-h intervals. Mean concentrations of FSH decreased, while mean concentrations of LH increased 24 and 32 h before deviation, respectively, and remained constant (no significant differences) for several 8-h intervals encompassing deviation. In addition to the increase and decrease in circulating estradiol concentrations associated with the preovulatory LH surge, an increase (P < 0.05) occurred between the beginning of deviation and 32 h after deviation. The results supported the hypotheses that deviation occurs rapidly (within 8 h), that elevated systemic LH concentrations are present during deviation, and that deviation is not preceded by an increase in systemic estradiol.  相似文献   

3.
Individual follicles >/=15 mm were monitored daily by ultrasonography in 12 mares during the estrous cycle. Follicular waves were designated as major waves (primary and secondary) and minor waves based on maximum diameter of the largest follicle of a wave (major waves, 34 to 47 mm; minor waves, 18 to 25 mm). Dominance of the largest follicle of major waves was indicated by a wide difference (mean, 18 mm) in maximum diameter relative to the second largest follicle. Dominant follicles of primary waves (n=12) emerged (attained 15 mm) at a mean of Day 12 and resulted in the ovulations associated with estrus (ovulation=Day 0). The dominant follicle of a secondary wave (n=1) emerged on Day 2 and subsequently ovulated in synchrony with the dominant follicle of the primary wave, which emerged on Day 9. The largest follicles of minor waves (n=4) emerged at a mean of Day 5, reached a mean maximum diameter 3 days later, and subsequently regressed. There was a significant increase in mean daily FSH concentrations either 6 days (primary wave) or 4 days (minor waves) before the emergence of a wave. Mean concentrations of FSH decreased significantly 2 days after emergence of the primary wave. Divergence between diameter of the dominant and largest subordinate follicle of the primary wave was indicated by a significantly greater mean diameter of the dominant follicle than of the largest subordinate follicle 3 days after wave emergence and by the cessation of growth of the largest subordinate follicle beginning 4 days after the emergence of a wave. Surges of FSH were identified in individual mares by a cycle-detection program; surges occurred every 3 to 7 days. Elevated mean FSH concentrations over the 6 days prior to emergence of the primary wave was attributable to a significantly greater frequency of individual FSH surges before wave emergence than after emergence and to an increase in magnitude of peak concentrations of FSH associated with individual surges.  相似文献   

4.
Synchronization of emergence of follicular waves in cattle   总被引:1,自引:0,他引:1  
In Experiment 1, heifers were randomly allocated to a control group (saline, im; n = 6) or a GnRH group (100 microg, im; n = 6). Treatment was given approximately 32 h before ovulation. The GnRH treatment shortened (P < 0.001) the time from treatment to emergence of Wave 1 and to the peak concentration of FSH associated with emergence. Administration of GnRH synchronized (less variability, P < 0.01) the time from treatment to ovulation but did not significantly synchronize follicular wave emergence, and tended (P < 0.06) to synchronize the time to the peak concentration of FSH. The mean number of follicles >5 mm per wave was higher (P < 0.01) in the GnRH group (10.7 +/- 1.3) than in the control group (5.7 +/- 0.8). In Experiment 2, either Folltropin (a porcine pituitary extract) was given or the dominant follicle of Wave 1 was aspirated 5 d after ovulation and the following wave (Wave 2) studied. Folltropin and/or aspiration shortened (<0.05) the time from treatment to emergence of Wave 2 and to the peak concentration of FSH associated with wave emergence, and all treatments synchronized (P < 0.01) wave emergence. Retrospective study indicated that the future dominant follicle could have been collected for experimental purposes with a 100% success rate if the following criteria had been used: 1) diameter of largest follicle 10 mm (largest follicle taken), 8 mm (2 largest follicles taken), or 7 mm (3 largest follicles taken); 2) diameter difference between the 2 largest follicles of 4 mm (largest follicle taken), 3 mm (2 largest follicles taken), or 2 mm (3 largest follicles taken); 3) 2 days after wave emergence (2 or 3 largest follicles taken); or 4) 5 days (largest follicle taken), 4 days (2 largest follicles taken), or 3 days (3 largest follicles taken) after treatment (Folltropin or dominant-follicle aspiration).  相似文献   

5.
Diameter of follicles was determined every 12 hours and progesterone (P4), FSH, and LH concentrations were determined every 6 hours from Day 12 (Day 0 = ovulation) to the ovulation at the end of the interovulatory interval (IOI). Groups were assigned on the basis of an ipsilateral (Ipsi) versus contralateral (Contra) relationship between the preovulatory follicle and CL and two follicular waves (2W) versus three waves (3W) per IOI. Numbers of IOIs were Ipsi-2W (n = 6), Ipsi-3W (n = 6), and Contra-3W (n = 8). Normalization to the end of luteolysis (day that P4 was closest to 1.0 ng/mL) indicated for the first time that concentrations of P4 and FSH were greater (P < 0.05) in 3W IOIs than in 2W IOIs for the 3 days before the beginning of a P4 decrease. The beginning of a P4 decrease occurred about 5 days and 6 hours after emergence of the preovulatory wave at 6 mm in 2W and 3W IOIs, respectively. On the day of diameter deviation between the future dominant and largest subordinate follicles in wave 3 of 3W IOIs, the future dominant follicle had the following characteristics: (1) distribution of diameters differed (P < 0.01) from unimodality; (2) diameter was greater (P < 0.05) in the Contra-3W group (9.8 ± 0.4 mm) than in the Ipsi-3W group (8.8 ± 0.3 mm); (3) diameter was similar to the diameter at the beginning of the P4 decrease (9.6 ± 0.9 mm); and (4) diameter was as small or smaller than diameter of the largest subordinate in seven of 14 heifers compared with zero of seven heifers in wave 2 of 2W IOIs. The differences involving deviation may be related to a reported greater frequency of the Contra-3W group than Ipsi-3W group. Results supported the hypothesis that emergence of the ovulatory wave occurs well before the beginning of luteolysis in 2W IOIs and near the beginning of luteolysis in 3W IOIs.  相似文献   

6.
Transitions from the anovulatory to the ovulatory season (n=20) and ovulatory to anovulatory season (n=11), were monitored daily by transrectal ultrasonography in wapiti. In 17 of 20 observations, the first interovulatory interval (IOI) was short (9.1+/-0.3 days; mean+/-S.E.M.) compared with later in the ovulatory season (21.3+/-0.1) and the last IOI (21.2+/-0.6 days). With one exception, the short IOI were composed of only one wave of follicular development. Subsequent IOI were composed of two or three waves. Maximum diameters of the first two ovulatory follicles were similar (11.3+/-0.4 mm versus 11.3+/-0.2 mm), but both were larger (P<0.05) than the last two ovulatory follicles of the ovulatory season (10.3+/-0.3 and 10.1+/-0.4 mm). Multiple ovulations occurred in three hinds at the first ovulation of the season and in one hind at the second ovulation, but were not at any other time. Day-to-day profiles of CL diameter and plasma progesterone concentration were smaller (P<0.05) for short versus long IOI. Maximum diameter (12.8+/-0.6 mm versus 12.5+/-0.6 mm) and the diameter profile of the last CL of the season were not different from that of the previous CL. In summary, transition to regular ovulation occurred over a 3-week interval and was preceded by one short IOI (9 days). Multiple ovulations were detected only at the onset of the ovulatory season. The characteristics of the last IOI of the ovulatory season were similar to those reported during the rut. The wave pattern of follicle development was maintained throughout both fall and winter transition periods and follicular wave emergence was preceded by a surge in serum FSH concentrations. Transition to anovulation occurred over a 3-month interval and was marked by a failure of the dominant follicle to ovulate after a typical luteal phase.  相似文献   

7.
The nature of emergence and deviation of follicles during follicular waves in cattle was studied in 3 experiments by re-examining data from previous projects. Wave emergence was defined as the day or examination (when more than 1 examination per day) the future dominant follicle was 4 mm (Day 0 or Examination 0). Deviation was defined as the beginning of the greatest difference in growth rates between the 2 largest follicles and between 2 consecutive examinations. The search for deviation in an individual wave was done retrospectively from the examination with the maximum diameter of the second largest follicle. In Experiment 1, follicles were assessed ultrasonically for 28 waves every 8 h. The number of examinations that encompassed the emergence of all growing 3-mm follicles was 10.0 +/-0.5 (mean +/-SEM; equivalent to 3.3 d) and extended from mean Examination -3.1 +/-0.3 to mean Examination 6.0 +/-0.6. A mean of 24 growing 3-mm follicles was found, and the maximal attained diameters were 4 mm (46%), 5 mm (25%), and >/=6 mm (29%). More (P<0.05) 3-mm follicles at Examinations -2 and -1 grew to >/=6 mm than to 4 or 5 mm, whereas more 3-mm follicles at Examinations 2 to 6 grew to only 4 mm. On average, the future dominant follicle appeared as a 3-mm follicle (Examination -2.1 +/-0.2) 6 and 10 h earlier (P<0.03) than for the largest (Examination -1.4 +/-0.3) and second-largest (Examination -0.8 +/-0.4) future subordinates, respectively. This result supported the hypothesis that the future dominant follicle has, on the average, an early developmental advantage. In Experiment 2 (n=33 waves), data were normalized to the day at the beginning of deviation (Day 2.8 +/-0.2) when the mean diameters of the dominant and largest subordinate follicle were 8.5 +/-0.2 mm and 7.2 +/-0.2 mm, respectively. This result suggests that the follicle selected to become dominant, as manifested by deviation, is the first follicle to develop to a decisive stage. In Experiment 3 (n=19 waves), FSH concentrations were lower (P<0.05) on the day at the beginning of deviation (8.5 +/-0.5 ng/ml) than on the day before (10.1 +/-0.8 ng/ml), with no continuing decrease after deviation. This temporal result suggests that the attainment of approximate basal levels of FSH is a component of the deviation mechanism.  相似文献   

8.
Low molecular weight insulin-like growth factor binding proteins (IGFBPs), particularly IGFBP-4, are believed to inhibit the actions of insulin-like growth factors (IGFs). We showed previously that ovarian follicular dominance in cattle is associated with the presence of a protease that degrades IGFBP-4. To test the hypothesis that specific IGFBP-4 proteolysis is associated with selection of the dominant follicle, we induced codominant follicles (co-DFs) during the first follicular wave of the estrous cycle. The ovaries of Holstein heifers were examined twice daily by ultrasonography; when the largest follicle reached 6 mm in diameter, saline (control, n = 5) or 2 mg of recombinant bovine (rb) FSH (FSH, n = 5) was injected i.m. every 12 h for 48 h. Follicular fluid was collected by aspiration from the two largest follicles/heifer 12 h after the last injection. IGFBPs in follicular fluid were quantified by Western ligand blotting/phosphorimaging. IGFBP-4 protease activity was measured by incubating follicular fluid with recombinant human (rh) IGFBP-4 substrate, followed by ligand blotting/phosphorimaging to quantify the percent of substrate loss and Western immunoblotting to detect specific proteolytic fragments. Co-DFs of FSH heifers did not differ (P > 0.05) from the single dominant follicle of controls in size, or in concentration of progesterone or level of IGFBP-4 in follicular fluid. In contrast, the largest subordinate follicle of control heifers was smaller, with lower progesterone and higher IGFBP-4 in the follicular fluid (P < 0.05). Concentrations of estradiol in follicular fluid were high in dominant follicles, intermediate in co-DFs, and low in subordinate follicles (P < 0.05). IGFBP-4 protease activity in co-DFs was similar (P > 0.05) to that of dominant follicles, but fourfold higher (P < 0.05) than that of subordinate follicles. The results strongly suggest that an FSH-dependent IGFBP-4 protease is associated with selection of the dominant follicle in cattle.  相似文献   

9.
A wave phenomenon of ovarian follicular development in women has recently been documented in our laboratory. The objective of the present study was to characterize follicular waves to determine whether women exhibit major and minor wave patterns of follicle development during the interovulatory interval (IOI). The ovaries of 50 women with clinically normal menstrual cycles were examined daily using transvaginal ultrasonography for one IOI. Profiles of the diameters of all follicles >or=4 mm and the numbers of follicles >or=5 mm were graphed during the IOI. Major waves were defined as those in which one follicle grew to >or=10 mm and exceeded all other follicles by >or=2 mm. Minor waves were defined as those in which follicles developed to a diameter of <10 mm and follicle dominance was not manifest. Blood samples were drawn to measure serum concentrations of estradiol-17beta, LH, and FSH. Women exhibited major and minor patterns of follicular wave dynamics during the IOI. Of the 50 women evaluated, 29/34 women with two follicle waves (85.3%) exhibited a minor-major wave pattern of follicle development and 5 women (14.7%) exhibited a major-major wave pattern. Ten of the 16 women with three follicle waves (62.5%) exhibited a minor-minor-major wave pattern, 3 women (18.8%) exhibited a minor-major-major wave pattern, and 3 women (18.8%) exhibited a major-major-major wave pattern. Documentation of major and minor follicular waves during the menstrual cycle challenges the traditional theory that a single cohort of antral follicles grows only during the follicular phase of the menstrual cycle.  相似文献   

10.
The objective of the present study was to characterize ovarian follicular dynamics and hormone concentrations during follicular deviation in the first wave after ovulation in Nelore (Bos indicus) heifers. Ultrasonographic exams were performed and blood samples were collected every 12h from the day of estrus until 120-144 h after ovulation in seven females. Deviation was defined as the point at which the growth rate of the dominant follicle became greater than the growth rate of the largest subordinate follicle. Deviation occurred approximately 65 h after ovulation. Growth rate of the dominant follicle increased (P<0.05) after deviation, while growth rate of the subordinate follicle decreased (P<0.05). Diameter of the dominant follicle did not differ from the subordinate follicle at deviation (approximately 5.4mm). The dominant follicle (7.6mm) was larger (P<0.05) than the subordinate follicle (5.3mm) 96 h after ovulation or 24h after deviation. Plasma FSH concentrations did not change significantly during the post-ovulatory period. The first significant increase in mean plasma progesterone concentration occurred on the day of follicular deviation. In conclusion, the interval from ovulation to follicular deviation (2.7 days) was similar to that previously reported in B. taurus females, but follicles were smaller. Diameters of the dominant follicle and subordinate follicle did not differ before deviation and deviation was characterized by an increase in dominant follicle and decrease in subordinate follicle growth rate. Variations in FSH concentrations within 12-h intervals were not involved in follicular deviation in Nelore heifers.  相似文献   

11.
We investigated factors that affect cumulus-oocyte complex (COC) morphology and oocyte developmental competence in subordinate follicles on different days after follicular wave emergence in beef heifers. In Experiment 1, heifers (n = 13) were assigned at random to COC aspiration during the growing/static (Days 1 to 3) or regressing (Day 5) phase of subordinate follicle development (follicular wave emergence = Day 0). Follicular wave emergence was induced by transvaginal ultrasound-guided follicular ablation, ovaries were collected at slaughter, all follicles > or = 2 mm except the dominant follicle were aspirated, and COC were microscopically evaluated for morphology. There was a greater percentage of COC with expanded cumulus layers on Day 5 (42.4%) than on Days 1 to 3 (2.2%). In Experiment 2, heifers (n = 64) at random stages of the estrous cycle had all follicles > or = 5 mm ablated and 4 d later, 2 doses of PGF were injected 12 h apart; heifers were monitored daily by ultrasonography for ovulation (Day 0 = follicular wave emergence). Heifers were assigned to the following time periods for oocyte collection from subordinate follicles: Days 0 and 1 (growing phase), Days 2, 3 and 4 (static phase), and Days 5 and 6 (regressing phase). Ovaries were individually collected at slaughter, and all follicles > or 2 mm except for the dominant follicle were aspirated. The COC were morphologically evaluated and then matured, fertilized and cultured in vitro. Expanded COC were more frequent during the regressing phase (53.4%) than the growing or static phase (14.4 and 17.8%, respectively; P < 0.05). While the proportions of COC with > or = 4 layers of cumulus cells and denuded oocytes were higher (P < 0.05) in the growing and static phases, the production of morulae was highest (P < 0.05) with COC collected from subordinate follicles during the regressing phase. In Experiment 3, heifers (n = 18) were assigned at random to oocyte collection from subordinate follicles 3 and 4 d (static phase) or 5 and 6 d (regressing phase) after follicular wave emergence. The heifers were monitored ultrasonically for ovulation (Day 0 = follicular wave emergence); COC were collected from all follicles (> or = 5 mm) except for the dominant follicle by transvaginal ultrasound-guided follicle aspiration 3 to 6 d later. Recovered oocytes were stained and examined microscopically to evaluate nuclear maturation. A higher proportion of oocytes collected on Days 5 and 6 showed evidence of nuclear maturation (50%) than on Days 3 and 4 (8.3%; P < 0.05). Results support the hypothesis that COC morphology and oocyte developmental competence change during the growing, static and regressing phases of subordinate follicle development.  相似文献   

12.
Follicle diameter deviation during follicular waves in cattle begins with a reduction in growth rates of developing subordinate follicles, in contrast to the maintenance of a constant growth rate by a developing dominant follicle. In experiment 1, the temporal changes encompassing deviation in concentrations of follicular fluid factors relative to one another in the three largest follicles (F1, F2, and F3) were studied. Follicular fluid samples were collected when F1 reached diameter ranges of 7.0-7.9, 8.0-8.9, 9.0-9.9, and 10.0-10.9 mm (n = 12 per range). The first increase (P < 0.05) in the difference between F1 and F2 for estradiol occurred at the 8.0- to 8.9-mm range, which was one range earlier than for diameter (P < 0.05). Free insulin-like growth factor (IGF)-1 concentrations in F1 were similar among diameter ranges, but concentrations in F1 were higher (P < 0.05) than in F2 for each range except 7.0-7.9 mm. Concentrations of free IGF-1 in F2 decreased (P < 0.05). No significant differences were detected in concentrations of progesterone, androstenedione, total inhibin, and inhibin-A. Averaged over follicles, inhibin-B decreased (P < 0.05) between the 8.0- to 8.9- and 10.0- to 10.9-mm ranges, and activin-A increased (P < 0.05) between the 7.0- to 7.9- and 9.0- to 9.9-mm ranges. However, no differences were found among follicles. In experiment 2, changes associated with the development of dominance by F2 were studied using ablation of F1 at the beginning of expected deviation (F1, 8.5 mm; Hour 0) as the reference point. Follicular fluid factors were compared at Hour 12 between F2 of a control group (F1 intact; n = 10) and an ablated group (F1 ablated; n = 10). Diameter (P < 0.02), estradiol (P < 0.001), free IGF-1 (P < 0.002), and progesterone (P < 0.003) were greater and IGF-binding protein-2 was lower (P < 0.01) in F2 of the ablated group at Hour 12. No differences were detected in concentrations of androstenedione, total inhibin, and inhibin-A. The results of the two experiments indicated, on a temporal basis, that intrafollicular changes in estradiol and the IGF system, but not in the inhibin/activin system, could account for a reported greater FSH responsiveness by the future dominant follicle than by the future subordinate follicles by the beginning of diameter deviation in cattle.  相似文献   

13.
Color Doppler transrectal ultrasound was used to evaluate blood flow area in the wall of dominant anovulatory follicles versus ovulatory follicles in mares during the transition between anovulatory and ovulatory seasons. Daily examinations were done in 11 control mares toward the end of the anovulatory season. In 13 separate mares, follicular fluid was collected from 30-mm follicles, and blood flow areas from control mares were used as a basis for designating the sampled follicle as either anovulatory or ovulatory. Blood flow area in the controls ranged from 0.18 to 0.35 cm(2) in six mares on the day of a 30-mm anovulatory follicle and from 0.25 to 0.86 cm(2) in 11 mares on the day of a 30-mm ovulatory follicle; the ranges did not overlap except for one follicle. In the controls, mean blood flow area was lower (P < 0.05) in the anovulatory group than in the ovulatory group for each day beginning with the first Doppler examination at 25 mm. For plasma LH in controls, an effect of follicle group (P < 0.0001) and an interaction (P < 0.0001) of group by day reflected lower (P < 0.05) concentrations in the anovulatory group on Days -6, -2, and 5-8 (Day 0 = 30-mm follicle). For plasma FSH, an interaction (P < 0.0001) reflected higher (P < 0.05) concentrations in the anovulatory group on Days -3 and 1-4. More (P < 0.05) statistically identified FSH surges occurred in the anovulatory group during Days -7 to 8. In the sampled mares, follicular-fluid concentrations of estradiol, free insulin-like growth factor-1, inhibin-A, and vascular endothelial growth factor were lower (P < 0.05) in 30-mm designated anovulatory follicles than in 30-mm designated ovulatory follicles. Results were interpreted as follows: 1) The future anovulatory dominant-sized follicle developed under an LH deficiency, 2) the LH deficiency led to reductions in blood flow area and in concentrations of follicular-fluid factors, and 3) the reduction in follicle production of FSH suppressors resulted in higher plasma FSH concentrations.  相似文献   

14.
Follicles of wave 1 were designated F1, F2, and so forth, according to descending diameter at the expected (F1, > or =8.2 mm) or observed beginning of deviation (Hour 0), as indicated by a reduction in growth rate of F2. During Hours -24 to 0 (experiment 1; n = 34 waves) and Hours -16 to 0 (experiment 2; n = 21), F1 and F2 grew in parallel (no significant differences). During Hours -16 to 0, growth rate was greater (P < 0.05) for F1 (1.4 +/- 0.1 mm/16 h) and F2 (1.0 +/- 0.1) than for F3 (0.6 +/- 0.1) and F4 (0.5 +/- 0.1). During Hours 0 to 16, growth rate was greater (P < 0.05) for F1 (1.4 +/- 0.2 mm/16 h) than for F2 (0.1 +/- 0.1), F3 (0.1 +/- 0.1), and F4 (0.1 +/- 0.2). In experiment 1, zero, one, two, or three largest follicles were ablated by aspiration of contents at Hour 0 (n = 7/group). For heifers with a single dominant follicle, the dominant follicle formed from the largest retained follicle more often when it was >7.0 mm (14 of 15) than when it was <7.0 mm (0 of 10). When the retained follicles were <7.0 mm, the first follicle to reach 7.0 mm became dominant in seven of eight heifers. Mean hour of observed deviation (occurring after Hour 0 in the ablation groups) increased progressively in groups with increasing number of ablated follicles. Plasma concentrations of FSH for groups with one, two, or three ablated follicles increased to a similar extent between Hours 0 and 12. Results supported the following: 1) during the 24 h before the beginning of deviation, small follicles grew more slowly than large follicles and the largest follicles grew in parallel; 2) after ablation of large follicles, the small retained follicles did not deviate until one reached a diameter characteristic of the beginning of deviation; 3) the potential for dominance at the expected beginning of deviation was greatest for the largest follicle and decreased progressively for the smaller follicles but only when the retained follicles were >7.0 mm; and 4) the three largest subordinate follicles began to deviate simultaneously.  相似文献   

15.
The effects of ablation of a dominant follicle and treatment with follicular fluid on circulating concentrations of follicle-stimulating hormone (FSH) were studied and the temporal relationships between surges of FSH and follicular waves were studied in heifers with two or three follicular waves/interovulatory interval. Cauterization of the dominant follicle on Day 3 or Day 5 (ovulation on Day 0) (six control and six treated heifers/day) resulted in a surge (P less than 0.05) in FSH beginning the day after cautery. The FSH surge prior to wave 2 (first post-treatment follicular wave) occurred 4 days (Day 3 cautery) and 2 days (Day 5 cautery) before the surge in control groups, corresponding to a 4-day and a 2-day advance in emergence of wave 2 compared with controls. It was concluded that the dominant follicle on Day 3 and Day 5 was associated with the suppression of circulating FSH concentrations. Heifers (n = 4/group) were untreated or treated intravenously with a proteinaceous fraction of bovine follicular fluid on Days 0-3, 3-6, or 6-11. Concentrations of FSH were suppressed (P less than 0.05) for the duration of treatment, regardless of the days of treatment. Cessation of treatment was followed within 1 day by the start of a surge in FSH. The FSH surge prior to wave 2 occurred 2 days earlier (treatment on Days 0-3), 1 day later (treatment on Days 3-6), and 6 days later (treatment on Days 6-11) than in controls, corresponding to an equivalent advance or delay, respectively, in the emergence of wave 2 compared with controls. The results suggest that the effects of exogenous follicular fluid on follicular development were mediated, in whole or in part, by altering plasma FSH concentrations. Control heifers combined for the two experiments were separated into those with 2-wave (n = 11) or 3-wave (n = 5) interovulatory intervals. Two-wave heifers had two FSH surges and 3-wave heifers had three apparent FSH surges during the interovulatory interval. Results of the cautery and follicular fluid experiments indicated that a surge in FSH necessarily preceded the emergence of a wave. The FSH surges in treated and control heifers began 2-4 days before the detectable (ultrasound) emergence of a follicular wave (follicles of 4 and 5 mm), peaked 1 or 2 days before emergence and began to decrease approximately when the follicles of a wave begin to diverge into a dominant follicle and subordinate follicles (follicles 6-7 mm).  相似文献   

16.
Changes in follicular fluid (FF) concentrations of estradiol, inhibin forms, and insulin-like growth factor binding proteins (IGFBPs), percentage of apoptotic granulosa cells (%A), and follicular size for individual follicles in a growing cohort were determined throughout the first wave of follicular development during the bovine estrous cycle and related to FSH decline. Four groups of heifers (n = 31) were ovariectomized between Days 1.5 and 4.5 of the estrous cycle at 5 +/- 1, 33 +/- 2, 53 +/- 1, and 84 +/- 2 h after the periovulatory peak in FSH concentrations. Follicles > or = 2.5 mm were dissected, measured, and FF aspirated. The five largest follicles were ranked based on their diameter (F1 to F5). Diameters of F1 to F5 were positively correlated with interval from FSH peak (r > or = 0.6, P < 0.05). Five hours after the FSH peak, follicular diameter and FF concentrations of estradiol, inhibins, and IGFBPs were similar for F1 to F5. From 5 to 33 h, amounts of the six precursor inhibin forms (> or = 48 kDa) increased (P < 0.05) in F1 follicles. The IGFBPs in F1 follicles remained low at all time periods. At 33 h, amounts of IGFBP-4 and -5 were higher (P < 0.05) in F4 and F5 compared with F1 follicles. At 84 h, IGFBP-2, -4, and -5 were increased (P < 0.05) in F3, F4, and F5 compared with F1. At 5, 33, or 53 h, %A was not different between follicles in any size class. At 84 h %A was increased (P < 0.05) in follicles <6 mm in diameter. However, at that time, %A did not differ between the selected DF and the largest subordinate follicle. For individual heifers, the selected DF at 84 h was largest in size, highest in estradiol, and lowest in IGFBP-2 and -4. The F1 follicle had highest estradiol in 23 of 27 heifers irrespective of stage of the wave and lowest IGFBP-4 in 19 of 21 heifers from 33 h. We concluded that the earliest intrafollicular changes that differentiate a dominant-like follicle from the growing cohort are enhanced capacity to produce estradiol and maintenance of low levels of IGFBPs.  相似文献   

17.
To examine endocrine and biochemical differences between dominant and subordinate follicles and how the dominant follicle affects the hypothalamic-pituitary-ovarian axis in Holstein cows, the ovary bearing the dominant follicle was unilaterally removed on Day 5 (n = 8), 8 (n = 8), or 12 (n = 8) of synchronized estrous cycles. Follicular development was followed daily by ultrasonography from the day of detected estrus (Day 0) until 5 days after ovariectomy. Aromatase activity and steroid concentrations in first-wave dominant and subordinate follicles were measured. Intact dominant and subordinate follicles were cultured in 4 ml Minimum Essential Medium supplemented with 100 microCi 3H-leucine to evaluate de novo protein synthesis. Five days after unilateral ovariectomy, cows were resynchronized and the experiment was repeated. Follicular growth was characterized by the development of single large dominant follicles, which was associated with suppression of other follicles. Concentrations of estradiol-17 beta (E2) in follicular fluid and aromatase activity of follicular walls were higher in dominant follicles (438.9 +/- 45.5 ng/ml; 875.4 +/- 68.2 pg E2/follicle) compared to subordinate follicles (40.6 +/- 69.4 ng/ml; 99.4 +/- 104.2 pg E2/follicle). Aromatase activity in first-wave dominant follicles was higher at Days 5 (1147.1 +/- 118.1 pg E2/follicle) and 8 (1028.2 +/- 118.1 pg E2/follicle) compared to Day 12 (450.7 +/- 118.1 pg E2/follicle). Concentrations of E2 and androstenedione in first-wave dominant follicles were higher at Day 5 (983.2 +/- 78.2 and 89.5 +/- 15.7 ng/ml) compared to Days 8 (225.1 +/- 78.6 and 5.9 +/- 14.8 ng/ml) and 12 (108.5 +/- 78.6 and 13.0 +/- 14.8 ng/ml). Concentrations of progesterone in subordinate follicles increased linearly between Days 5 and 12 of the estrous cycle. Plasma concentrations of FSH increased from 17.9 +/- 1.4 to 32.5 +/- 1.4 ng/ml between 0 and 32 h following unilateral removal of the ovary with the first-wave dominant follicle. Increases in plasma FSH were associated with increased numbers of class 1 (3-4 mm) follicles in cows that were ovariectomized at Day 5 or 8 of the cycle. Unilateral ovariectomy had no effects on plasma concentrations of LH when a CL was present on the remaining ovary. First-wave dominant follicles incorporated more 3H-leucine into macromolecules and secreted high (90,000-120,000) and low (20,000-23,000) molecular weight proteins that were not as evident for subordinate follicles at Days 8 and 12.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Selection of dominant follicles in cattle is associated with a deviation in growth rate between the dominant and largest subordinate follicle of a wave (diameter deviation). To determine whether acquisition of ovulatory capacity is temporally associated with diameter deviation, cows were challenged with purified LH at known times after a GnRH-induced LH surge (experiment 1) or at known follicular diameters (experiments 2 and 3). A 4-mg dose of LH induced ovulation in all cows when the largest follicle was > or =12 mm (16 of 16), in 17% (1 of 6) when it was 11 mm, and no ovulation when it was < or =10 mm (0 of 19). To determine the effect of LH dose on ovulatory capacity, follicular dynamics were monitored every 12 h, and cows received either 4 or 24 mg of LH when the largest follicle first achieved 10 mm in diameter (experiment 2). The proportion of cows ovulating was greater (P < 0.05) for the 24-mg (9 of 13; 69.2%) compared with the 4-mg (1 of 13; 7.7%) LH dose. To determine the effect of a higher LH dose on follicles near diameter deviation, follicular dynamics were monitored every 8 h, and cows received 40 mg of LH when the largest follicle first achieved 7.0, 8.5, or 10.0 mm (experiment 3). No cows with a follicle of 7 mm (0 of 9) or 8.5 mm (0 of 9) ovulated, compared with 80% (8 of 10) of cows with 10-mm follicles. Thus, follicles acquired ovulatory capacity at about 10 mm, corresponding to about 1 day after the start of follicular deviation, but they required a greater LH dose to induce ovulation compared with larger follicles. We speculate that acquisition of ovulatory capacity may involve an increased expression of LH receptors on granulosa cells of the dominant follicle and that this change may also be important for further growth of the dominant follicle.  相似文献   

19.
The present study evaluates the effect of the presence of a large growing follicle at the onset of superovulatory treatment on follicular recruitment and ovulatory response in dairy goats. The treatment consisted of six equal doses of pFSH given every 12 h (total dose: 200 mg NIH-FSH-P1) which was initiated at Day 0 (Group D0) or Day 3 (Group D3) postovulation. Two half-doses of an analogue of prostaglandin F2alpha (delprostenate, 80 microg each) were administered together with the last two FSH doses to ensure luteolysis. A dose of a GnRH analogue (busereline acetate, 10.5 microg) was administered at the onset of estrus. Ovarian changes were evaluated twice a day by transrectal ultrasonography. Follicles were classified according to follicular diameter as small (3 to < 4 mm), medium (4 to < 5 mm) and large follicles (> or = 5 mm). The number of corpora lutea (CL) was recorded after laparotomy performed 6 days after estrus. The work was conducted in replicates. In the first trial, the does were assigned to either the D0 (n = 4) or D3 group (n = 4) and in the second replicate, each goat was assigned to the alternate group. No large follicles were recorded and the diameter of the largest follicle was 3.3 +/- 0.1 mm (mean +/- S.E.M.) at the initiation of the treatment in D0-treated goats. In contrast, a growing large follicle was present (6.7 +/- 0.4 mm, P < 0.01) when the treatment was initiated in D3-treated goats. In these goats, the number of small follicles increased 24 h after ovulation but then declined 48 h later, temporally correlated with the growth of the largest follicle of the first follicular wave. The number of small follicles recruited by the FSH treatment was significantly higher and occurred earlier in D0- than in D3-treated goats (9.0 +/- 1.3 versus 5.6 +/- 1.1 follicles; P < 0.05; and 24 h versus 48 h from the onset of the treatment, respectively). The number of large follicles at the onset of estrus was higher in D0- than in D3-treated goats (14.4 +/- 1.9 versus 10.3 +/- 1.3; P < 0.05). Consequently, the number of CL recorded 6 days after estrus were higher in D0- than in D3-treated goats (13.6 +/- 1.9 versus 10.4 +/- 1.9; P < 0.05, respectively). These results demonstrate that the presence of a dominant follicle at the time of initiation of super-stimulatory treatment is detrimental to ovulatory response. This study supports the advantages of the so-called Day 0 protocol, e.g. treatment starting soon after ovulation, when the emergence of the first follicular wave takes place and there are no dominant follicles.  相似文献   

20.
Endocrine control of follicular growth was determined by observing the left ovary of prepubertal calves previously treated with a potent GnRH agonist for 13 days. The ovarian response to hormonal stimulation was determined using the right ovaries of the same animals. Three-month-old crossbred calves were assigned to one of the two following treatment groups: 1) saline control for 13 days, with purified porcine FSH for the last 3 days (n = 5); and 2) GnRHa for 13 days, with purified porcine FSH for the final 3 days (n = 5). The left ovaries were removed from all calves after 10 days, and the right ovaries were removed at the end of treatment. Plasma concentrations of FSH, LH and oestradiol-17 beta were followed up during the GnRHa and pFSH treatments. The maximum macroscopic diameter of the F1 follicle, as determined by daily ultrasonography, did not differ between GnRHa-treated calves (from 6.6 to 10.4 mm) and the saline control calves (from 6.7 to 10.3 mm). Histological analysis of the ovaries showed that the number of follicles > 0.40 mm in diameter varied greatly for calves of the two groups (from 11 to 220 at 10 days). GnRHa significantly increased the mean number of follicles (total and nonatretic) of size class > 5.4 mm as compared to saline control calves (P < 0.05). The FSH treatment significantly increased the mean number of follicles 3.00-5.4 and > 5.4 mm in diameter (P < 0.05), with no change in the number of follicles smaller than 3.00 mm. The rate of atresia of large follicles (3.01-5.40 mm) was significantly reduced by purified porcine FSH treatment in both groups (P < 0.05). In no case did the GnRHa induce ovulation or luteinization of follicles. The LH and FSH concentrations increased transiently after GnRHa treatment on the first day, but afterwards, both hormones increased to only one sixth of what was observed after the initial GnRHa injection treatment. This increase in LH and FSH was observed 1 h after GnRHa treatment on each consecutive day of the experiment and were significantly different in the control group (0 h versus 1 h versus 2 h x saline control versus GnRH agonists groups; P < 0.01). During the superovulatory treatment, FSH concentrations peaked at around 0.70 ng.mL-1 in both saline- and GnRHa-treated groups on the first day but on the last day of surovulatory treatment, FSH concentrations were higher in GnRHa agonist-treated calves than in the control calves (day 11 versus day 12 versus day 13 x saline control versus GnRH agonist treatment groups; P < 0.01). LH profiles were unchanged by surovulatory treatment. Concentrations of oestradiol-17 beta increased significantly over the three days (P < 0.001) of the superovulatory treatments in both groups (P < 0.01). These results indicate that GnRH agonist treatment allows recruited antral follicles to pursue their growth during the early selection process via sustained FSH and LH secretion allowing more than a single large follicle to maintain their growth without going to atresia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号