首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel glyoxylate- and glyoxamide-derived metalloporphyrins 26-58 were synthesized and evaluated as potential superoxide dismutase (SOD) mimetics. Relative to previously studied MnTBAP analogues, the glyoxylate-derived metalloporphyrins 32, 39, and 54 and glyoxamide-derived metalloporphyrin 49, exhibited enhanced activity in the SOD assay and the majority of the analogues in the current series showed enhanced inhibition of lipid peroxidation and catalase activity.  相似文献   

2.
Superoxide is involved in a plethora of pathological and physiological processes via oxidative stress and/or signal transduction pathways. Superoxide dismutase (SOD) mimics have, thus, been actively sought for clinical and mechanistic purposes. Manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is one of the most intensely explored "SOD mimics" in biology and medicine. However, we show here that this claimed SOD activity of MnTBAP in aqueous media is not corroborated by comprehensive structure-activity relationship studies for a wide set of Mn porphyrins and that MnTBAP from usual commercial sources contains different amounts of noninnocent trace impurities (Mn clusters), which inhibited xanthine oxidase and had SOD activity in their own right. In addition, the preparation and thorough characterization of a high-purity MnTBAP is presented for the first time and confirmed that pure MnTBAP has no SOD activity in aqueous medium. These findings call for an assessment of the relevance and suitability of using MnTBAP (or its impurities) as a mechanistic probe and antioxidant therapeutic; conclusions on the physiological and pathological role of superoxide derived from studies using MnTBAP of uncertain purity should be examined judiciously. An unequivocal distinction between the biological effects due to MnTBAP and that of its impurities can only be unambiguously made if a pure sample is/was used. This work also illustrates the contribution of fundamental structure-activity relationship studies not only for drug design and optimization, but also as a "watchdog" mechanism for checking/spotting eventual incongruence of drug activity in chemical and biological settings.  相似文献   

3.
Design and synthesis of 16-membered macrolides modified at the C-12 and 13 positions are described. The compounds we report here have an arylalkylamino group attached to the C-12 position of the macrolactone. Both types of derivatives, 12,13-cyclic carbamates and non-carbamate analogues, were synthesized via 12-amino-13-hydroxy intermediates derived from 12,13-epoxide that was prepared by selective epoxidation at the C-12 and C-13 positions. 4'-Hydroxyl analogues were also prepared by acidic hydrolysis of a neutral sugar. These compounds were evaluated for in vitro antibacterial activity against respiratory tract pathogens. Some of these analogues exhibited an improved activity compared with the corresponding parent compound.  相似文献   

4.
The use of the potent antitumor antibiotic doxorubicin (DOX) is hampered because of its severe cardiac toxicity that leads to the development of cardiomyopathy and heart failure. In this study, we have developed a cell culture model for DOX-induced myocardial injury using primary adult rat cardiomyocytes that were cultured in serum-free medium and exposed to 1 to 40 microM DOX. DOX caused a dose-dependent release of sarcosolic enzyme lactate dehydrogenase (LDH) from cultured myocytes. The release of LDH was prevented by the cell-permeable superoxide dismutase (SOD) mimetic (MnTBAP), but was unaffected by either cell-impermeable SOD enzyme, or manganese (II) sulfate. Ebselen, a glutathione peroxidase (GPx) mimetic, enhanced the protection of cardiomyocytes afforded by MnTBAP. DOX caused the increased formation of oxidants in cardiomyocytes, and MnTBAP lowered the amount of intracellular oxidants induced by DOX. In addition, DOX selectively inactivated aconitase in cardiomyocytes, and MnTBAP partially reversed this inactivation. Ebselen further amplified the protective effect of MnTBAP on aconitase activity. These results suggest that the SOD mimetic MnTBAP prevents DOX-induced damage to cardiomyocytes and that the GPx mimetic ebselen synergistically enhanced the cardioprotection afforded by MnTBAP. Relevance of these findings to minimizing cardiotoxicity in cancer treatment is discussed.  相似文献   

5.
Pharmacological effects of 6-azauridine (4) analogues were evaluated using hypnotic activity, pentobarbital (PB)-induced sleep prolongation and locomotor activity as indices. Compound 4, N3-benzyl- (10), N3-o-xylyl- (11), N3-m-xylyl- (12), N3-p-xylyl- (13), N3-alpha-phenylethyl-substituted 6-azauridine (14) exhibited hypnotic activity and PB-induced sleep prolongation, whereas N3-alkyl substituted analogues (methyl-, ethyl-, n-propyl-, n-butyl- and allyl-substitution) did not. Compound 4 and xylyl analogues (11-13) significantly decreased locomotor activity of mice by i.c.v. injection and produced motor incoordination. The results indicate that 4 and its benzyl related analogues, but not alkyl analogues have depressant effects on the central nervous system (CNS).  相似文献   

6.
The spectroscopic and functional characterization of 13C-labeled synthetic melittin and three analogues is described. Selectively 13C-enriched tryptophan ( [13C delta 1]-L-Trp) and glycine ( [13C alpha]Gly) were incorporated into melittin and three analogues by de novo peptide synthesis. 13C-Labeled tryptophan was incorporated into melittin at position 19 and into single-tryptophan analogues of melittin at positions 17, 11, and 9, respectively. Each of the synthetic peptides contained 13C-labeled glycine at position 12 only. The peptides were characterized functionally in a cytolytic assay, and spectroscopically by CD, fluorescence, and NMR. The behavior of 13C-labeled synthetic melittin was, in all respects, indistinguishable from that of the naturally occurring peptide. All of the analogues were found to be efficient lytic agents and thus were functionally similar to the native peptide, yet no evidence was found for formation of a melittin-like tetramer by any of the analogues in aqueous media, although there was a propensity for apparently nonspecific peptide aggregation, especially for MLT-W9. Since the analogues did exhibit fractional helicities by CD comparable to or even greater than melittin itself in the presence of methanol, we infer that tetramer assembly requires not only the ability to form alpha-helix but also a very precise packing of amino acid side chains of the constituent monomers. The 13C chemical shift of the Gly-12 C alpha was found to be a sensitive marker for helix formation in all of the peptides. For melittin itself, 13C NMR spectra revealed a downfield shift of approximately 1.8 ppm for the Gly-12 13C alpha resonance of the tetramer relative to that observed for the free monomer in D2O. In mixed samples containing melittin monomer and tetramer, two discrete Gly-12 13C alpha peaks were observed simultaneously, suggestive of slow exchange between the two species. We conclude that melittin's ability to form a soluble tetramer is not a prerequisite for cytolytic activity, nor is cytolytic potential precisely correlated with the ability to form an amphiphilic helix.  相似文献   

7.
An array of 12 new saphenamycin analogues modified at the benzoate moiety was synthesized on solid support. Synthesis commenced with a chemoselective anchoring of saphenic acid through the carboxyl group to a 2-chlorotrityl functionalized polystyrene resin. The secondary alcohol was acylated in parallel with a series of differently substituted benzoic acid derivatives. Treatment with TFA-CH(2)Cl(2) (5:995) released the expected saphenamycin analogues into solution. These new analogues were purified, characterized and screened for antimicrobial activity against Bacillus subtilis and Proteus mirabilis. Eight analogues exhibited MIC values against B. subtilis ranging from 0.07 to 3.93 microg/mL, comparable to the activities of previously reported saphenamycin analogues.  相似文献   

8.
To elucidate the significance of mitochondrial localization of Cu/Zn-SOD (SOD1), we studied the relationship between the release of mitochondrial SOD1 and apoptosis. Kinetic analysis using HL-60 cells showed that both mitochondria-dependent and mitochondria-independent pro-apoptotic drugs, such as staurosporine and actinomycin D, increased the generation of reactive oxygen species (ROS) and decreased mitochondrial membrane potential (Δψ). ROS generation by these drugs was inhibited by Mn (III) tetrakis (5,10,15,20-benzoic acid) porphyrin (MnTBAP), a cell membrane-permeable SOD mimetic. However, MnTBAP inhibited the apoptosis induced by staurosporine but not by actinomycin D. MnTBAP failed to inhibit Δψ decrease and release of SOD1 and cytochrome c induced by actinomycin D. Moreover, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), an inhibitor of voltage-dependent anion channel (VDAC), inhibited the release of the two proteins and apoptosis induced by staurosporine but not actinomycin D. These results suggest that ROS plays an important role in mitochondria-dependent but not mitochondria-independent apoptosis and that the release of SOD1 increases the susceptibility of mitochondria to oxidative stress, thereby enhancing a vicious cycle leading to apoptosis.  相似文献   

9.
Each peptide bond CONH group in the most important COOH-terminal octapeptide region of [Leu14]bombesin was replaced by a CH2NH group using recently developed rapid solid-phase methods. The resulting analogues were then examined for amylase releasing activity in guinea pig pancreatic acini and for their ability to inhibit binding of [125I-Tyr4]bombesin to acinar cells. Replacement of the Trp8-Ala9, Gly11-His12, and His12-Leu13 peptide bonds resulted in about 1000-, 200-, and 300-fold losses in both amylase releasing activity and binding affinity. The Val10-Gly11 replacement, however, retained 30% potency relative to the parent peptide. Ala9-Val10 and Leu13-Leu14 bond replacement analogues exhibited no detectable amylase releasing activity but were still able to bind to acini with Kd values of 1060 and 60 nM, respectively (compared to 15 nM for [Leu14]bombesin itself). Subsequently, both analogues were demonstrated to be competitive inhibitors of bombesin-stimulated amylase release with IC50 values of 937 and 35 nM, respectively. [Leu14-psi-CH2NH-Leu13]Bombesin exhibits a 100-fold improvement in binding affinity compared to previously reported bombesin receptor antagonists and showed no affinity for substance P receptors. It was also a potent inhibitor of bombesin-stimulated growth of murine Swiss 3T3 cells with an IC50 of 18 nM. In terms of a bombesin receptor-binding conformation, these results may aid in the delineation of intramolecular hydrogen-bonding points and the eventual design of improved, conformationally restricted analogues.  相似文献   

10.
All four possible A-ring stereoisomers of 2,2-dimethyl-1,25-dihydroxyvitamin D(3) (4) were designed and convergently synthesized. Nine-step conversion of methyl hydroxypivalate 6 provided the desired A-ring enyne synthon (13a,b) in good overall yield. Cross-coupling reaction of the A-ring synthon 13a,b with the CD-ring portion in the presence of palladium catalyst, followed by deprotection, gave the vitamin analogues (4a-d). We also synthesized four stereoisomers of 2,2-ethano-1,25-dihydroxyvitamin D(3) (5), as novel spiro-ring analogues having cyclopropane fused at the C2 position. Biological potencies of the synthesized compounds were assessed in terms of the vitamin D receptor (VDR) binding affinity, as well as the HL-60 cell differentiation-inducing activity. The 2,2-ethano analogue 5a showed a comparable activity to the natural hormone 1, while the 2,2-dimethyl analogue 4a exhibited one-third of the activity of 1 in cell differentiation, with the reduced VDR binding affinity.  相似文献   

11.
Manganese(III) meso-tetrakis(4-carboxypheny)porphyrin (MnTBAP) is a readily available and widely used agent to scavenge reactive oxygen species. A major limitation of MnTBAP is its relatively weak potency due to its low metal centered redox potential. The goal of these studies was to prepare a more potent analog of MnTBAP by increasing its redox potential through beta-substitution on the porphyrin ring by bromination. Manganese(III) beta-octabromo-meso-tetrakis(4-carboxyphenyl)porphyrin (MnBr(8)TBAP) was prepared in three steps starting from the methyl ester of the free ligand meso-tetrakis(4-carboxyphenyl)porphyrin, with an overall yield of 50%. The superoxide dismutase (SOD)-like activity of MnBr(8)TBAP (IC(50)=0.7 microM) was the same as manganese(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (MnTM-4-PyP(5+)), while the metal-centered redox potential of the first was considerably higher than the second (E(1/2)=+128 and 0 mV vs. normal hydrogen electrode, respectively). However, a number of these cationic Mn-porphyrins (such as MnTM-4-PyP(5+)) redox-cycle with cytochrome P450 reductase in the presence of oxygen and NADPH whereas MnTBAP and its halogenated analog, MnBr(8)TBAP do not. The enhanced ability of MnBr(8)TBAP to inhibit paraquat- and hypoxia-induced injuries in vitro is also reported. In these in vitro models, in which cationic Mn-porphyrins exhibit very low activity, MnBr(8)TBAP appears to be at least eightfold more active than the non-brominated analog MnTBAP.  相似文献   

12.
Peroxynitrite, a potent cytotoxic oxidant formed by the reaction of NO with superoxide anion, has been proposed to have major pathogenetic role in inflammatory process. Here we have investigated the therapeutic efficacy of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a novel superoxide dismutase mimetic that possesses peroxynitrite scavenging effect, in rats subjected to carrageenan-induced pleurisy. In vivo treatment with MnTBAP (3 and 10 mg/kg 5 min before carrageenan) prevented in a dose-dependent manner the carrageenan-induced the degree of pleural exudation, polymorphonuclear migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and histological organ injury was significantly reduced by MnTBAP. However, MnTBAP did not inhibit the inducible NO synthase in lung samples. Immunohistochemical analysis for nitrotyrosine, a footprint of peroxynitrite, revealed a positive staining in lungs from carrageenan-treated rats. No positive nitrotyrosine staining was found in the lungs of the carrageenan-treated rats that received MnTBAP (10 mg/kg) treatment. In addition, in vivo MnTBAP treatment significantly reduced in a dose-dependent manner peroxynitrite formation as measured by the oxidation of the fluorescent dye dihydrorhodamine 123, prevented the appearance of DNA damage, the decrease in mitochondrial respiration and partially restored the cellular level of NAD+ in ex vivo macrophages harvested from the pleural cavity of rats subjected to carrageenan-induced pleurisy. Our study demonstrates that the MnTBAP exerts multiple protective effects in carrageenan-induced pleurisy. We suggest peroxynitrite produced during the inflammatory process trigger DNA strand breakage and subsequent cellular dysfunction. Part of these anti-inflammatory effects may be related to: (1) reduction of superoxide formation due to the superoxide dismutase-like activity of the compound and (2) scavenging of peroxynitrite.  相似文献   

13.
3-(S)-1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid isolated from A. Chinese G. Don was found to possess moderate anti-aggregation activity, but with poor bioavailability. To improve its pharmacological property, we designed and synthesized a series of novel dipeptide analogues by incorporating tetrahydro-beta-carboline-3-carboxylic acid skeleton as an amino acid surrogate (*Trp). It turned out these dipeptide analogues exhibited good membrane permeability based on in vitro Caco-2 cell monolayers permeability assay. As a result, the overall biological properties of these molecules were significantly improved depending on the nature of the amino acid residues introduced onto the 3-position of the tetrahydro-beta-carboline moiety. It was very interesting to notice that these dipeptide analogues (5b,c,h,i,n,o,p,q) displayed a remarkable dual antiaggregatory activity in both of ADP- and PAF-induced platelet aggregation assay, and their aggregation response was significantly higher than that of aspirin (p<0.01). In addition, these dipeptide analogues were observed for the dose-dependent antithrombotic effect using in vivo rat arterial thrombosis model. The potency of antithrombotic activity of 5h,i,n,p was significantly higher than that of aspirin (n=12, p<0.01) at equal dose (5 micromol/kg).  相似文献   

14.
Two moieties of epipodophyllotoxin have been linked at C4-position to provide novel bisepipodophyllotoxin analogues. These have been evaluated for their anticancer potential and DNA-topoisomerase II poisoning activity. Most of these analogues have exhibited promising in vitro anticancer activity against different human tumour cell lines and interestingly 4(')-O-methylated analogues have shown increased cytotoxic activity. Similarly, the DNA-topo II poisoning activity tested for these compounds has not only exhibited the DNA cleavage potential comparable to etoposide, but for some compounds this cleavage potential is superior to etoposide. Further, an interesting structure-activity relationship of these epipodophyllotoxin dimers have been generated on the basis of GI(50) values. The equations indicated that GI(50) activity is strongly dependent on structural and thermodynamic properties. These QSAR results are discussed in conjunction with conformational analysis from molecular modelling studies. QSAR models developed in these studies will be helpful in the future to design novel potent bispodophyllotoxin analogues by minor structural modifications.  相似文献   

15.
Using the inactivation of mitochondrial and cytosolic aconitases as markers of compartment-specific superoxide (O2(-)) production, we show that oxygen-glucose deprivation (OGD) or excitotoxin exposure produce a time-dependent inactivation of mitochondrial, but not cytosolic, aconitase in cortical cultures. To determine if mitochondrial O2(-) production was an important determinant in neuronal death resulting from OGD, metalloporphyrins with varying superoxide dismutase (SOD) activity were tested for their ability to protect against mitochondrial aconitase inactivation and cell death. OGD-induced mitochondrial aconitase inactivation and cell death was inhibited by manganese tetrakis (4-benzoic acid) porphyrin (MnTBAP), manganese tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP) and NMDA receptor antagonists. By contrast, NMDA- or kainate (KA)-induced mitochondrial aconitase inactivation and cell death was inhibited by MnTBAP, but not MnTE-2-PyP. Moreover, both MnTBAP and MnTE-2-PyP penetrated mitochondrial fractions of cortical cells. These data suggest that mitochondrial aconitase inactivation closely correlates with subsequent neuronal death following excitotoxicity produced by OGD or NMDA/KA exposure. Assessment of biological rather biochemical antioxidant activities better predicted neuroprotection by metalloporphyrins. Moreover, antioxidants that protect oxidant-sensitive mitochondrial targets such as aconitase may be useful as therapies for disease states involving excitotoxicity.  相似文献   

16.
4-Aminoantipyrine (4-amino-1,5-dimethyl-2-phenylpyrazole-3-one) and its analogues have been found to be compounds of interest for their anti-inflammatory, analgesic, antiviral, antipyretic, antirheumatic and antimicrobial activities. In the present study, Schiff base analogues of 4-aminoantipyrine were synthesized by the condensation reaction with substituted benzaldehydes and then evaluated for their antioxidant and anti-inflammatory activities. From among the synthesized compounds (3a-m, 4 and 5), 3 k and 3f exhibited the highest antioxidant activity followed by 3g, 3l, 3c, 3i, 5, 3m and 3h. The IC(50) values for compounds 3 k and 3f were found to be 0.44 and 0.93 μM, respectively, comparable to that of ascorbic acid (IC(50) 0.41 μM), a standard antioxidant agent. From the comparisons between the hydroxylated and methoxylated compounds, the rank order of antioxidant activity for the products resulting from benzylidene phenyl ring substitution was 2,4,6-OH>3,4-OH>3-OMe-4-OH>3,5-OMe-4-OH>2,4-OH>3-Me-4-OMe>3,4-OMe>4-OMe>4-OH. The structure-activity relationship study revealed that the position and nature of the substituted group on the benzylidene phenyl ring of the Schiff base analogues of 4-aminoantipyrine play an important role in their antioxidant activity. The anti-inflammatory activity of 3f, which also exhibited excellent antioxidant activity, was evaluated in terms of its inhibition of NO production, an inflammatory modulator, in LPS pretreated RAW 264.7 cells using the Griess method. We also examined whether or not this compound had effect on iNOS and COX-2 mRNA expression in RAW 264.7 cells. It was observed that compound 3f significantly reduced NO production and inhibited LPS-stimulated iNOS and COX-2 mRNA levels in a dose-dependent manner. Overall, 3f showed promising antioxidant and anti-inflammatory activities and may be used as the lead compound in a future study.  相似文献   

17.
The naturally occurring phthalide-containing antibiotics spirolaxine methyl ether, CJ-12,954, CJ-13,013, CJ-13,015, CJ-13,102, CJ-13,103, CJ-13,104 and CJ-13,108, have been reported to exhibit anti-H. pylori activity. However, the exact stereochemistry of spirolaxine methyl ether, CJ-12,954 or CJ-13,013, contributing to this observed activity has not been confirmed. The anti-H. pylori activity of several analogues of spirolaxine methyl ether, CJ-12,954 and CJ-13,013 of defined stereochemistry together with the anti-H. pylori activity of several indole analogues of the simpler phthalide-containing antibiotics CJ-13,102, CJ-13,104, CJ-13,108 and CJ-13,015 is reported herein. A 1:1 mixture of spiroacetals 5b and 6b in which the phthalide substituent exhibited (3R)-stereochemistry was sixty times more active than the corresponding 1:1 mixture of spiroacetals with (3S)-stereochemistry. Notably, the unnatural (2'S)-diastereomer of spirolaxine methyl ether exhibited more potent anti-H. pylori activity than the natural product spirolaxine methyl ether. The 4,6-dimethoxyindoles 9, 10, 11 and 13 were all found to be less active than their parent compounds 1, 2, 3 and 4, respectively. Chain-shortened 4,6-dimethoxyindole analogue 12 of CJ-13,108 3 and 4,6-dimethoxyindole-spiroacetal 13 exhibited weak anti-H. pylori activity thus providing future opportunity for drug discovery programs.  相似文献   

18.
A series of omega-alkoxy ethers were prepared with variation of the length of the aliphatic chain of suberoylanilide hydroxamic acid (SAHA, vorinostat). Eight carbon long chain analogues showed the best activity, among which several substituted benzyl ether derivatives exhibited inhibitory activity on HDAC comparable to SAHA, and antiproliferative activity on three human cell lines (NB4, H460, and HCT-116) better than SAHA. However, no significant difference in antiproliferative activity was observed between two enantiomers bearing the benzyl ether moiety.  相似文献   

19.
Circadian variations in superoxide dismutase (SOD) activity were determined in liver homogenates of Balb-C mice that were synchronized under controlled environmental conditions with 12 h light: 12 h dark. The activity of hepatic SOD exhibited a significant circadian rhythm, with a minimum at 01:00 h and maximum at 10:00-13:00 h. It is concluded that fluctuations in hepatic SOD activity render mice more susceptible to the toxic effects of reactive oxygen radicals at particular times of the day.  相似文献   

20.
Huisgen [3+2] dipolar cycloaddition of 6″-azido-6″-deoxy-α-galactosyl ceramide 11 with a range of alkynes (or a benzyne precursor) yielded a series of triazole-containing α-galactosyl ceramide (α-GalCer) analogues in high yield. These α-GalCer analogues and the precursor azide 11 were tested for their ability to activate iNKT cells and stimulate IL-2 cytokine secretion in vitro, and IFN-γ and IL-4 cytokine secretion in vivo. Some of these analogues, specifically 11, 12b, 12f and 13, were more potent IL-2 stimulators than the prototypical CD1d agonist, α-GalCer 1. In terms of any cytokine bias, most of the triazole-containing analogues exhibited a small Th2 cytokine-biasing response relative to that shown by α-GalCer 1. In contrast, the cycloaddition precursor, namely azide 11, provided a small Th1 cytokine-biasing response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号