首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
BACKGROUND: Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of food and confine them to initial infection site. Necrotrophic pathogens, such as the fungi Botrytis cinerea and Sclerotinia sclerotiorum, however, can utilize dead tissue. RESULTS: Inoculation of B. cinerea induced an oxidative burst and hypersensitive cell death in Arabidopsis. The degree of B. cinerea and S. sclerotiorum pathogenicity was directly dependent on the level of generation and accumulation of superoxide or hydrogen peroxide. Plant cells exhibited markers of HR death, such as nuclear condensation and induction of the HR-specific gene HSR203J. Growth of B. cinerea was suppressed in the HR-deficient mutant dnd1, and enhanced by HR caused by simultaneous infection with an avirulent strain of the bacterium Pseudomonas syringae. HR had an opposite (inhibitory) effect on a virulent (biotrophic) strain of P. syringae. Moreover, H(2)O(2) levels during HR correlated positively with B. cinerea growth but negatively with growth of virulent P. syringae. CONCLUSIONS: We show that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum. By contrast, B. cinerea triggers HR, which facilitates its colonization of plants. Hence, these fungi can exploit a host defense mechanism for their pathogenicity.  相似文献   

2.
Loss of a stearoyl-ACP desaturase activity in the Arabidopsis thaliana ssi2 mutant confers susceptibility to the necrotroph, Botrytis cinerea. In contrast, the ssi2 mutant exhibits enhanced resistance to Pseudomonas syringae, Peronospora parasitica, and Cucumber mosaic virus. The altered basal resistance to these pathogens in the ssi2 mutant plant is accompanied by the constitutive accumulation of elevated salicylic acid (SA) level and expression of the pathogenesis-related 1 (PR1) gene, the inability of jasmonic acid (JA) to activate expression of the defensin gene, PDF1.2, and the spontaneous death of cells. Here, we show that presence of the eds5 and pad4 mutant alleles compromises the ssi2-conferred resistance to Pseudomonas syringae pv. maculicola. In contrast, resistance to B. cinerea was restored in the ssi2 eds5 and ssi2 pad4 double-mutant plants. However, resistance to B. cinerea was not accompanied by the restoration of JA responsiveness in the ssi2 eds5 and ssi2 pad4 plants. The ssi2 eds5 and ssi2 pad4 plants retain the ssi2-conferred spontaneous cell death phenotype, suggesting that cell death is not a major factor that predisposes the ssi2 mutant to infection by B. cinerea. Furthermore, the high SA content of the ssi2 pad4 plant, combined with our previous observation that the SA-deficient ssi2 nahG plant succumbs to infection by B. cinerea, suggests that elevated SA level does not have a causal role in the ssi2-conferred susceptibility to B. cinerea. Our results suggest that interaction between an SSI2-dependent factor or factors and an EDS5- and PAD4-dependent mechanism or mechanisms modulates defense to B. cinerea.  相似文献   

3.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

4.
5.
Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.  相似文献   

6.
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that colonize the rhizosphere of many plant species and confer beneficial effects, such as an increase in plant growth. PGPR are also well known as inducers of systemic resistance to pathogens in plants. However, the molecular mechanisms involved locally after direct perception of these bacteria by plant cells still remain largely unknown. Burkholderia phytofirmans strain PsJN is an endophytic PGPR that colonizes grapevine and protects the plant against the grey mould disease caused by Botrytis cinerea. This report focuses on local defence events induced by B. phytofirmans PsJN after perception by the grapevine cells. It is demonstrated that, after addition to cell suspension cultures, the bacteria were tightly attaching to plant cells in a way similar to the grapevine non-host bacteria Pseudomonas syringae pv. pisi. B. phytofirmans PsJN perception led to a transient and monophasic extracellular alkalinization but no accumulation of reactive oxygen species or cell death were detected. By contrast, challenge with P. syringae pv. pisi induced a sustained and biphasic extracellular alkalinization, a two phases oxidative burst, and a HR-like response. Perception of the PGPR also led to the production of salicylic acid (SA) and the expression of a battery of defence genes that was, however, weaker in intensity compared with defence gene expression triggered by the non-host bacteria. Some defence genes up-regulated after B. phytofirmans PsJN challenge are specifically induced by exogenous treatment with SA or jasmonic acid, suggesting that both signalling pathways are activated by the PGPR in grapevine.  相似文献   

7.
Arabidopsis dnd1 and dnd2 mutants lack cyclic nucleotide-gated ion channel proteins and carry out avirulence or resistance gene-mediated defense with a greatly reduced hypersensitive response (HR). They also exhibit elevated broad-spectrum disease resistance and constitutively elevated salicylic acid (SA) levels. We examined the contributions of NPR1, SID2 (EDS16), NDR1, and EIN2 to dnd phenotypes. Mutations that affect SA accumulation or signaling (sid2, npr1, and ndr1) abolished the enhanced resistance of dnd mutants against Pseudomonas syringae pv. tomato and Hyaloperonospora parasitica but not Botrytis cinerea. When SA-associated pathways were disrupted, the constitutive activation of NPR1-dependent and NPR1-independent and SA-dependent pathways was redirected toward PDF1.2-associated pathways. This PDF1.2 overexpression was downregulated after infection by P. syringae. Disruption of ethylene signaling abolished the enhanced resistance to B. cinerea but not P. syringae or H. parasitica. However, loss of NPR1, SID2, NDR1, or EIN2 did not detectably alter the reduced HR in dnd mutants. The susceptibility of dnd ein2 plants to B. cinerea despite their reduced-HR phenotype suggests that cell death repression is not the primary cause of dnd resistance to necrotrophic pathogens. The partial restoration of resistance to B. cinerea in dnd1 npr1 ein2 triple mutants indicated that this resistance is not entirely EIN2 dependent. The above findings indicate that the broad-spectrum resistance of dnd mutants occurs due to activation or sensitization of multiple defense pathways, yet none of the investigated pathways are required for the reduced-HR phenotype.  相似文献   

8.
Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.  相似文献   

9.
10.
11.
12.
13.
We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.  相似文献   

14.
The reduction of phytochemicals applied to grapevine relies on the development of alternative strategies involving activation of the plant's own defense system. The aim of this work was to study the signaling of defense responses to pathogens in Vitis vinifera. We identified in V. vinifera cv. Chardonnay two putative regulatory elements, VvNHL1 and VvEDS1, with similarity to Arabidopsis defense regulators NDR1 and EDS1. Expression studies of these putative signaling genes together with other known grape defense genes show that they are differentially regulated by salicylic acid and jasmonate-ethylene treatments, as well as by inoculation with different types of pathogens. The expression of VvEDS1 was stimulated by salicylic acid treatment, Botrytis cinerea and Plasmopara viticola inoculation, whereas VvNHL1 was repressed by B. cinerea. VvNHL1 overexpression introduced in Arabidopsis ndr1 mutant did not complement the mutation in terms of sensitivity to avirulent Pseudomonas syringae pv. tomato. Moreover, we observed a weakened resistance to B. cinerea of ndr1 mutants overexpressing VvNHL1, which may be related to cell death enhancement. Together, our results identify two new pathogen-responsive regulatory elements in Vitis vinifera, with potential roles in pathogen defense.  相似文献   

15.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   

16.
Activation of the tobacco gene hsr203 is rapid, highly localized, specific for incompatible plant-pathogen interactions, and strongly correlated with programmed cell death occurring in response to diverse pathogens. Functional characterization of hsr203 gene product has shown that HSR203 is a serine hydrolase that displays esterase activity. We show here that transgenic tobacco plants deficient in HSR203 protein exhibit an accelerated hypersensitive response when inoculated with an avirulent strain of Ralstonia solanacearum. This response was accompanied by a maximal level of cell death and a drastic inhibition of in planta bacterial growth. Transgenic plants deficient in HSR203 were also found to show increased resistance in a dosage-dependent manner to Pseudomonas syringae pv. pisi, another avirulent bacterial pathogen, and to virulent and avirulent races of Phytophthora parasitica, a fungal pathogen of tobacco, but not to different virulent bacteria. Surprisingly, expression of another hsr gene, hsr515, and that of the defence genes PR1-a and PR5, was strongly reduced in the transgenic lines. Our results suggest that hsr203 antisense suppression in tobacco can have pleiotropic effects on HR cell death and defence mechanisms, and induces increased resistance to different pathogens.  相似文献   

17.
18.
19.
Salicylic acid (SA) is an important regulator of plant resistance to biotrophic and hemi-biotrophic pathogens. The enhanced pseudomonas susceptibility 1 ( eps1 ) mutant in Arabidopsis thaliana is hypersusceptible to both virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae . Through positional cloning, the EPS1 gene was isolated and found to encode a novel member of the BAHD acyltransferase superfamily. Pathogen-induced accumulation of SA and expression of pathogenesis-related ( PR ) genes were compromised in the eps1 mutant. SA could induce PR1 gene expression and restore disease resistance in the eps1 mutant. These results suggest that EPS1 functions upstream of SA and may be involved directly in synthesis of a precursor or a regulatory molecule for SA biosynthesis. Mutations of EPS1 or other genes important for SA accumulation or signaling conferred enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola in the Nossen-0 background but had little effect in the Columbia-0 background. These results suggest that there is natural variation among Arabidopsis ecotypes with respect to the antagonistic cross-talk between defense signaling pathways against various types of microbial pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号