首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The active efflux system contributing to the solvent tolerance of Pseudomonas putida S12 was characterized physiologically. The mutant P. putida JK1, which lacks the active efflux system, was compared with the wild-type organism. None of 20 known substrates of common multi-drug-resistant pumps had a stronger growth-inhibiting effect on the mutant than on the wild type. The amount of [14C]toluene accumulating in P. putida S12 increased in the presence of the solvent xylene and in the presence of uncouplers. The effect of uncouplers confirms the proton dependency of the efflux system in P. putida S12. Other compounds, potential substrates for the solvent pump, did not affect the accumulation of [14C]toluene. These results show that the efflux system in P. putida S12 is specific for organic solvents and does not export antibiotics or other known substrates of multi-drug-resistant pumps. Received: 15 February 2000 / Received revision: 16 June 2000 / Accepted: 18 June 2000  相似文献   

3.
Solvent-tolerant bacteria in biocatalysis   总被引:24,自引:0,他引:24  
The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more solvents can now be used in such two-liquid water–solvent systems. We are gaining new insights into the mechanisms of bacterial solvent tolerance, such as the active efflux of solvents from the cytoplasmic membrane and solvent-impermeable outer membranes.  相似文献   

4.
Organic-solvent-tolerant bacteria are considered extremophiles with different tolerance levels that change among species and strains, but also depend on the inherent toxicity of the solvent. Extensive studies to understand the mechanisms of organic solvent tolerance have been done in Gram-negative bacteria. On the contrary, the information on the solvent tolerance mechanisms in Gram-positive bacteria remains scarce. Possible shared mechanisms among Gram-(−) and Gram-(+) microorganisms include: energy-dependent active efflux pumps that export toxic organic solvents to the external medium; cis-to-trans isomerization of unsaturated membrane fatty acids and modifications in the membrane phospholipid headgroups; formation of vesicles loaded with toxic compounds; and changes in the biosynthesis rate of phospholipids to accelerate repair processes. However, additional physiological responses of Gram-(+) bacteria to organic solvents seem to be specific. The aim of the present work is to review the state of the art of responsible mechanisms for organic solvent tolerance in Gram-positive bacteria, and their industrial and environmental biotechnology potential.  相似文献   

5.
A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition. Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30°C. The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several toluene-sensitive Tn5 mutants have been isolated from the toluene-resistant strain and showed various levels of sensitivity. Most of these mutations did not cause significant changes in antibiotic resistance; however, one of the mutants (TOL-4) was highly susceptible to both organic solvents and various antibiotics, especially β-lactams. Sequencing analysis revealed that the mutation in TOL-4 had been introduced into a gene that may encode a transporter protein of an efflux system. This efflux system is very similar to one of the multidrug efflux systems of Pseudomonas aeruginosa. These observations indicate that a multidrug efflux system plays a major role in the organic solvent resistance of P. putida TOL. However, several other genes may also be involved. Received: December 18, 1997 / Accepted: March 16, 1998  相似文献   

6.
Using a series of efflux mutants of Pseudomonas aeruginosa, the MexAB-OprM pump was identified as contributing to this organism's tolerance to the antimicrobial agent tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and α-terpineol. These data show that a multidrug efflux system of P. aeruginosa can extrude monoterpenes and related alcohols.  相似文献   

7.
8.
9.
Escherichia coli and Pseudomonas aeruginosa grown in the presence of certain harmful organic solvents become susceptible to these solvents during the cultivation. This susceptibility is conspicuous in the stationary phase of growth. The organic solvent tolerance levels of these microorganisms were maintained when the oxygen concentration was kept high. The tolerance levels were maintained also when these organisms were grown with nitrate present under anaerobic respiratory conditions. Received: 21 March, 1997 / Accepted: July 20, 1997  相似文献   

10.
The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous?Corganic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown.  相似文献   

12.
13.
Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logPow (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of ≥2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We tested P. putida DOT-T1E tolerance to different aliphatic alcohols with a logPow value between 2 and 4, such as decanol, nonanol, and octanol, which are potentially useful in biotransformations in double-phase systems in which compounds with a logPow around 1.5 are produced. P. putida DOT-T1E responds to aliphatic alcohols as the second phase through cis-to-trans isomerization of unsaturated cis fatty acids and through efflux of these aliphatic alcohols via a series of pumps that also extrude aromatic hydrocarbons. These defense mechanisms allow P. putida DOT-T1E to survive well in the presence of high concentrations of the aliphatic alcohols, and growth with nonanol or decanol occurred at a high rate, whereas in the presence of an octanol double-phase growth was compromised. Our results support that the logPow of aliphatic alcohols correlates with their toxic effects, as octanol (logPow = 2.9) has more negative effects in P. putida cells than 1-nonanol (logPow = 3.4) or 1-decanol (logPow = 4). A P. putida DOT-T1E derivative bearing plasmid pWW0-xylE::Km transforms m-xylene (logPow = 3.2) into 3-methylcatechol (logPow = 1.8). The amount of 3-methylcatechol produced in an aliphatic alcohol/water bioreactor was 10- to 20-fold higher than in an aqueous medium, demonstrating the usefulness of double-phase systems for this particular biotransformation.  相似文献   

14.
An organic solvent-tolerant lipase from newly isolated Pseudomonas aeruginosa LX1 has been purified by ammonium sulfate precipitation and ion-exchange chromatography leading to 4.3-fold purification and 41.1% recovery. The purified lipase from P. aeruginosa LX1 was homogeneous as determined by SDS-PAGE, and the molecular mass was estimated to be 56 kDa. The optimum pH and temperature for lipase activity were found to be 7.0 and 40 °C, respectively. The lipase was stable in the pH range 4.5–12.0 and at temperatures below 50 °C. Its hydrolytic activity was found to be highest towards p-nitrophenyl palmitate (C16) among the various p-nitrophenol esters investigated. The lipase displayed higher stability in the presence of various organic solvents, such as n-hexadecane, isooctane, n-hexane, DMSO, and DMF, than in the absence of an organic solvent. The immobilized lipase was more stable in the presence of n-hexadecane, tert-butanol, and acetonitrile. The transesterification activity of the lipase from P. aeruginosa LX1 indicated that it is a potential biocatalyst for biodiesel production.  相似文献   

15.

Background  

Multi-drug efflux pumps have been increasingly recognized as a major component of resistance in P. aeruginosa. We have investigated the expression level of efflux systems among clinical isolates of P. aeruginosa, regardless of their antimicrobial susceptibility profile.  相似文献   

16.
The solvent tolerance of the progesterone 11α-hydroxylase system of Aspergillus ochraceus has been defined and, given its limited extent for conventional organic solvents, a number of natural oils have been examined. They have been found superior and represent an interesting solvent class for organic reactants of partial polarity. The study emphasizes that solvents for the products of biocatalytic action on organic reactants must often be partially polar and must not interact strongly with cellular lipids.  相似文献   

17.
Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance.Subject terms: Microbiology, Diseases  相似文献   

18.
Solvent-tolerant microorganisms are useful in biotransformations with whole cells in two-phase solvent-water systems. The results presented here describe the effects that organic solvents have on the growth of these organisms. The maximal growth rate of Pseudomonas putida S12, 0.8 h−1, was not affected by toluene in batch cultures, but in chemostat cultures the solvent decreased the maximal growth rate by nearly 50%. Toluene, ethylbenzene, propylbenzene, xylene, hexane, and cyclohexane reduced the biomass yield, and this effect depended on the concentration of the solvent in the bacterial membrane and not on its chemical structure. The dose response to solvents in terms of yield was linear up to an approximately 200 mM concentration of solvent in the bacterial membrane, both in the wild type and in a mutant lacking an active efflux system for toluene. Above this critical concentration the yield of the wild type remained constant at 0.2 g of protein/g of glucose with increasing concentrations of toluene. The reduction of the yield in the presence of solvents is due to a maintenance higher by a factor of three or four as well as to a decrease of the maximum growth yield by 33%. Therefore, energy-consuming adaptation processes as well as the uncoupling effect of the solvents reduce the yield of the tolerant cells.  相似文献   

19.
Pseudomonas sp. strain ST-200, which is capable of conversion of cholesterol, was isolated from humus soil. This organism effectively modified cholesterol dissolved in an organic solvent by dehydrogenation and oxygenation. When the organism was grown in a medium overlaid with a 10% volume of a mixed organic solvent (p-xylene and diphenylmethane; 3:7, vol/vol) containing cholesterol (20 mg/ml), the cholesterol concentration in the organic solvent was reduced to only 0.4 mg/ml after 8 days. Although the organism did not assimilate cholesterol, 98% of the cholesterol initially present disappeared. The organic solvent layer contained two major and three minor compounds converted from cholesterol. The major compounds were 6β-hydroxycholest-4-en-3-one (8.9 mg/ml) and cholest-4-ene-3,6-dione (7.6 mg/ml). The concentrations of these compounds were equivalent to 43 and 37% of the cholesterol initially present. This organism would provide an effective and convenient system to oxidize the C-3 and -6 positions of cholesterol by introduction of a hydroxyl or ketone group.  相似文献   

20.

Background

Bacteria are well known to form dormant persister cells that are tolerant to most antibiotics. Such intrinsic tolerance also facilitates the development of multidrug resistance through acquired mechanisms. Thus persister cells are a promising target for developing more effective methods to control chronic infections and help prevent the development of multidrug-resistant bacteria. However, control of persister cells is still an unmet challenge.

Methodology/Principal Findings

We show in this report that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can restore the antibiotic susceptibility of Pseudomonas aeruginosa PAO1 persister cells at growth non-inhibitory concentrations. Persister control by BF8 was found to be effective against both planktonic and biofilm cells of P. aeruginosa PAO1. Interestingly, although BF8 is an inhibitor of quorum sensing (QS) in Gram-negative bacteria, the data in this study suggest that the activities of BF8 to revert antibiotic tolerance of P. aeruginosa PAO1 persister cells is not through QS inhibition and may involve other targets.

Conclusion

BF8 can sensitize P. aeruginosa persister cells to antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号