首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

2.
Refolding together the expressed alpha and beta subunits of the Rhodospirillum rubrum F(1)(RF(1))-ATPase led to assembly of only alpha(1)beta(1) dimers, showing a stable low MgATPase activity. When incubated in the presence of AlCl(3), NaF and either MgAD(T)P or CaAD(T)P, all dimers associated into closed alpha(3)beta(3) hexamers, which also gained a low CaATPase activity. Both hexamer ATPase activities exhibited identical rates and properties to the open dimer MgATPase. These results indicate that: a) the hexamer, as the dimer, has no catalytic cooperativity; b) aluminium fluoride does not inhibit their MgATPase activity; and c) it does enable the assembly of RrF(1)-alpha(3)beta(3) hexamers by stabilizing their noncatalytic alpha/beta interfaces. Refolding of the RrF(1)-alpha and beta subunits together with the spinach chloroplast F(1) (CF(1))-gamma enabled a simple one-step assembly of two different hybrid RrF(1)-alpha(3)beta(3)/CF(1)gamma complexes, containing either wild type RrF(1)-beta or the catalytic site mutant RrF(1)beta-T159S. They exhibited over 100-fold higher CaATPase and MgATPase activities than the stabilized hexamers and showed very different catalytic properties. The hybrid wild type MgATPase activity was, as that of RrF(1) and CF(1) and unlike its higher CaATPase activity, regulated by excess free Mg(2+) ions, stimulated by sulfite, and inhibited by azide. The hybrid mutant had on the other hand a low CaATPase but an exceptionally high MgATPase activity, which was much less sensitive to the specific MgATPase effectors. All these very different ATPase activities were regulated by thiol modulation of the hybrid unique CF(1)-gamma disulfide bond. These hybrid complexes can provide information on the as yet unknown factors that couple ATP binding and hydrolysis to both thiol modulation and rotational motion of their CF(1)-gamma subunit.  相似文献   

3.
Removal of the ability to form a salt bridge or hydrogen bonds between the beta subunit catch loop (beta Y297-D305) and the gamma subunit of Escherichia coli F1Fo-ATP synthase significantly altered the ability of the enzyme to hydrolyze ATP and the bacteria to grow via oxidative phosphorylation. Residues beta T304, beta D305, beta D302, gamma Q269, and gamma R268 were found to be very important for ATP hydrolysis catalyzed by soluble F1-ATPase, and the latter four residues were also very important for oxidative phosphorylation. The greatest effects on catalytic activity were observed by the substitution of side chains that contribute to the shortest and/or multiple H-bonds as well as the salt bridge. Residue beta D305 would not tolerate substitution with Val or Ser and had extremely low activity as beta D305E, suggesting that this residue is particularly important for synthesis and hydrolysis activity. These results provide evidence that tight winding of the gamma subunit coiled-coil is important to the rate-limiting step in ATP hydrolysis and are consistent with an escapement mechanism for ATP synthesis in which alpha beta gamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.  相似文献   

4.
Oligonucleotide-directed mutagenesis was used to substitute Asn or Val for residue Asp-242 in the beta-subunit of Escherichia coli F1-ATPase. Asp-242 is strongly conserved in beta-subunits of F1-ATPase enzymes, in a region of sequence which shows homology with numerous nucleotide-binding proteins. By analogy with adenylate kinase (Fry, D.C., Kuby, S.A., and Mildvan, A.S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 907-911), beta-Asp-242 of F1-ATPase might participate in catalysis through electrostatic effects on the substrate Mg2+ or through hydrogen bonding to the substrate(s); an acid-base catalytic role is also plausible. The substitutions Asn and Val were chosen to affect the charge, hydrogen-bonding ability, and hydrophobicity of residue beta-Asp-242. Both mutations significantly impaired oxidative phosphorylation rates in vivo and membrane ATPase and ATP-driven proton-pumping activities in vitro. Asn-242 was more detrimental than Val-242. Purified soluble mutant F1-ATPases had normal molecular size and subunit composition, and displayed 7% (beta-Asn-242) and 17% (beta-Val-242) of normal specific Mg-ATPase activity. The relative MgATPase activities of both mutant enzymes showed similar pH dependence to normal. Relative MgATPase and CaATPase activities of normal and mutant enzymes were compared at widely varied pMg and pCa. The mutations had little effect on KM MgATP, but KM CaATP was reduced. The data showed that the carboxyl side-chain of beta-Asp-242 is not involved in catalysis either as a general acid-base catalyst or through direct involvement in any protonation/deprotonation-linked mechanism, nor is it likely to be directly involved in liganding to substrate Mg2+ during the reaction. Specificity constants (kcat/KM) for MgATP and CaATP were reduced in both mutant enzymes, showing that the mutations destabilized interactions between the catalytic nucleotide-binding domain and the transition state.  相似文献   

5.
Three-dimensional models of human alcohol dehydrogenase subunits have been constructed, based on the homologous horse enzyme, with computer graphics. All types of class I subunits (alpha, beta, and gamma) and the major allelic variants (beta 1/beta 2 and gamma 1/gamma 2) have been studied. Residue differences between the E-type subunit of the horse enzyme and any of the subunits of the human isozymes occur at 64 positions, about half of which are isozyme-specific. About two thirds of the substitutions are at the surface and all differences can be accommodated in highly conserved three-dimensional structures. The model of the gamma isozyme is most similar to the crystallographically analyzed horse liver E-type alcohol dehydrogenase, and has all the functional residues identical to those of the E subunit except for one which is slightly smaller: Val-141 in the substrate pocket. The residues involved in coenzyme binding are generally conserved between the horse enzyme and the alpha, beta, and gamma types of the human enzyme. In contrast, single exchanges of these residues are the ones involved in the major allelic differences (beta 1 versus beta 2 and gamma 1 versus gamma 2), which affects the overall rate of alcohol oxidation since NADH dissociation is the rate-determining step. Residue 47 is His in beta 2 and Arg in the beta 1, gamma 1, and gamma 2 subunits, and in horse liver alcohol dehydrogenase. Both His and Arg can make a hydrogen bond to a phosphate oxygen atom of NAD; hence the lower turnover rate of beta 1 apparently derives from a charge effect. The substitution to Gly in the alpha subunit results in one less hydrogen bond in NAD binding, and consequently in rapid dissociation. This may explain why the overall rate is an order of magnitude faster than that of beta 1. The important difference between gamma 1 and gamma 2 is an exchange at position 271 from Arg to Gln which can give a hydrogen bond from Gln in gamma 2 to the adenine of NAD. The tighter binding to gamma 2 can account for the slower overall catalytic rate in this isozyme. The kinetics and interactions of cyclohexanol and benzyl alcohol with the isozymes were judged by docking experiments using an interactive fitting program.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Mutant genes for the gamma subunit of H+-translocating ATPase (H+-ATPase) were cloned from eight different strains of Escherichia coli isolated in this laboratory. Determination of their nucleotide sequences revealed that they are amber nonsense mutations: a Gln codon at position 15, 158, 227, 262, and 270, respectively, was replaced by a termination codon in these strains. As terminal Met is missing in the gamma subunit, these results indicate that these strains are capable of synthesizing fragments of gamma subunits of 13, 156, 225, 260, and 268 amino acid residues, respectively. Studies on the properties of membranes of these strains suggested the importance of the region between Gln 269 and the carboxyl terminus (residue 286) for forming a stable F1 complex with ATPase activity and the region between Gln 226 and Gln 261 for normal interaction of F1 with F0. The sequence from Gln 261 to Gln 269 also seemed to be important for stability of F1 assembly on the membranes. The high frequency of the nonsense mutations suggested that the number of essential residues is limited in this subunit. Comparison of the homologies of the amino acid sequences of the gamma subunits from four different sources confirmed this notion: 19% of amino acid residues are identically conserved in these four strains, and the conserved regions are the amino terminal and carboxyl terminal regions.  相似文献   

7.
The ATP synthase of the thermoalkaliphilic Bacillus sp. TA2.A1 operates exclusively in ATP synthesis direction. In the crystal structure of the nucleotide-free alpha(3)beta(3)gamma epsilon subcomplex (TA2F(1)) at 3.1 A resolution, all three beta subunits adopt the open beta(E) conformation. The structure shows salt bridges between the helix-turn-helix motif of the C-terminal domain of the beta(E) subunit (residues Asp372 and Asp375) and the N-terminal helix of the gamma subunit (residues Arg9 and Arg10). These electrostatic forces pull the gamma shaft out of the rotational center and impede rotation through steric interference with the beta(E) subunit. Replacement of Arg9 and Arg10 with glutamines eliminates the salt bridges and results in an activation of ATP hydrolysis activity, suggesting that these salt bridges prevent the native enzyme from rotating in ATP hydrolysis direction. A similar bending of the gamma shaft as in the TA2F(1) structure was observed by single-particle analysis of the TA2F(1)F(o) holoenzyme.  相似文献   

8.
Activation of the latent ATPase of soluble CF1 by methanol is shown to involve several distinct effects. CaATPase activity of whole, but not epsilon-deficient or heat-activated CF1, is stimulated by methanol. This suggests that one effect of methanol is to overcome inhibition by the epsilon subunit. In contrast, the MgATPase activities of both whole and epsilon-deficient CF1 are further stimulated by methanol. This second activating effect can be traced in part to a greatly increased affinity of CF1, due to methanol, for those anions which reverse the inhibitory effect of Mg2+. Since the inhibition by free Ca2+ is much less severe than that caused by Mg2+, anions have relatively little effect on CaATPase. Thus methanol has little or no effect when Ca2+ is the divalent cation, but stimulates the reaction when Mg2+ is used. Methanol also stimulates the MgATPase activity of epsilon-deficient CF1 in the complete absence of activating anions. This additional effect is shown to arise from an increase in the Vmax rather than from changes in either the Km for MgATP or the Ki for free Mg2+. Since this change in Vmax occurs with the MgATPase but not the CaATPase, it can be inferred that different steps are rate-limiting in the two activities.  相似文献   

9.
Tentoxin, produced by phytopathogenic fungi, selectively affects the function of the ATP synthase enzymes of certain sensitive plant species. Binding of tentoxin to a high affinity (K(i) approximately 10 nM) site on the chloroplast F(1) (CF(1)) strongly inhibits catalytic function, whereas binding to a second, lower affinity site (K(d) > 10 microM) leads to restoration and even stimulation of catalytic activity. Sensitivity to tentoxin has been shown to be due, in part, to the nature of the amino acid residue at position 83 on the catalytic beta subunit of CF(1). An aspartate in this position is required, but is not sufficient, for tentoxin inhibition. By comparison with the solved structure of mitochondrial F(1) [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628], Asp83 is probably located at an interface between alpha and beta subunits on CF(1) where residues on the alpha subunit could also participate in tentoxin binding. A hybrid core F(1) enzyme assembled with beta and gamma subunits of the tentoxin-sensitive spinach CF(1), and an alpha subunit of the tentoxin-insensitive photosynthetic bacterium Rhodospirillum rubrum F(1) (RrF(1)), was stimulated but not inhibited by tentoxin [Tucker, W. C., Du, Z., Gromet-Elhanan, Z. and Richter, M. L. (2001) Eur. J. Biochem. 268, 2179-2186]. In this study, chimeric alpha subunits were prepared by introducing short segments of the spinach CF(1) alpha subunit from a poorly conserved region which is immediately adjacent to beta-Asp83 in the crystal structure, into equivalent positions in the RrF(1) alpha subunit using oligonucleotide-directed mutagenesis. Hybrid enzymes containing these chimeric alpha subunits had both the high affinity inhibitory tentoxin binding site and the lower affinity stimulatory site. Changing beta-Asp83 to leucine resulted in loss of both inhibition and stimulation by tentoxin in the chimeras. The results indicate that tentoxin inhibition requires additional alpha residues that are not present on the RrF(1) alpha subunit. A structural model of a putative inhibitory tentoxin binding pocket is presented.  相似文献   

10.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

12.
13.
F1-ATPase is the major enzyme for ATP synthesis in mitochondria, chloroplasts, and bacterial plasma membranes. F1-ATPase obtained from thermophilic bacterium PS3 (TF1) is the only ATPase which can be reconstituted from its primary structure. Its beta subunit constitutes the catalytic site, and is capable of forming hybrid F1's with E. coli alpha and gamma subunits. Since the stability of TF1 resides in its primary structure, we cloned a gene coding for TF1, and the primary structure of the beta subunit was deduced from the nucleotide sequence of the gene to compare the sequence with those of beta's of three major categories of F1's; prokaryotic membranes, chloroplasts, and mitochondria. The following results were obtained. Homology: The primary structure of the TF1 beta subunit (473 residues, Mr = 51,995.6) showed 89.3% homology with 270 residues which are identical in the beta subunits from human mitochondria, spinach chloroplasts, and E. coli. It contained regions homologous to several nucleotide-binding proteins. Secondary structure: The deduced alpha-helical (30.1%) and beta-sheet (22.3%) contents were consistent with those determined from the circular dichroism spectra. Residues forming reverse turns (Gly and Pro) were highly conserved among the F1 beta subunits. Substituted residues and stability of TF1: We compared the amino acid sequence of the TF1 beta subunit with those of the other F1 beta subunits mentioned above. The observed substitutions in the thermophilic subunit increased its propensities to form secondary structures, and its external polarity to form tertiary structure. Codon usage: The codon usage of the TF1 beta gene was found to be unique. The changes in codons that achieved these amino acid substitutions were much larger than those caused by minimal mutations, and the third letters of the optimal codons were either guanine or cytosine, except in codons for Gln, Lys, and Glu.  相似文献   

14.
Studies were carried out to determine whether a simple electron-dense "heavy atom" like iodine could be introduced selectively into one or more of the subunits of the mitochondrial ATP synthase complex of rat liver. Surprisingly, very low amounts of iodine are incorporated into the isolated F1 moiety of this complex under conditions which result in a marked loss of catalytic activity. ATPase activity is inactivated in a concentration-dependent manner at pH 7.5 with half-maximal inactivation occurring at about 40 microM iodine. A maximum of only 10 atoms of iodine are incorporated per F1 molecule under conditions where inhibition of ATPase activity is linearly related to iodine incorporation. The molecular size of F1 after iodination is unchanged, indicating that inactivation is due to modification of essential amino acid residues rather than subunit dissociation. Treatment of F1, with 20-50 microM [125I]iodine followed sequentially by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography showed that the beta subunit is preferentially labeled. Significantly, about two atoms of iodine per beta subunit are incorporated. Some iodine amounting to less than 23% of the total radioactivity placed on the gels is recovered in the alpha and gamma subunits whereas no radioactivity is detected in the delta and epsilon subunits. Iodination of F1 appears to modify essential residues other than those involved in substrate or product binding per se. Thus, nucleotide binding to F1 is unaltered by iodine, and neither phosphate, MgADP, nor MgATP protects F1 against inhibition by this agent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The alpha(M)beta(2) integrin plays an important role in leukocyte biology through its interactions with a diverse set of ligands. Efficient ligand binding requires the involvement of both the alpha(M) and beta(2) subunits. Past ligand binding studies have focused mainly on the alpha(M) subunit, with the beta(2) subunit being largely unexplored. Therefore, in this study we conducted homolog-scanning mutagenesis on the I-domain (residues 125-385) within the beta(2) subunit. We identified four noncontiguous sequences (Arg(144)-Lys(148), Gln(199)-Ala(203), Leu(225)-Leu(230), and Gly(305)-His(309)) that are critical for fibrinogen and C3bi binding to alpha(M)beta(2). Molecular modeling revealed that these four sequences reside within a narrow region on the surface of the beta(2)I-domain, in close proximity to three potential cation-binding sites. Among these sequences, Gln(199)-Ala(203), Leu(225)-Leu(230), and Gly(305)-His(309) are important for the binding of both ligands, whereas Arg(144)-Lys(148) is more critical for fibrinogen than for C3bi binding. These sequences within the beta(2)I-domain are directly involved in ligand binding, since 1) switching these segments to their corresponding beta(1) sequences destroyed ligand binding; 2) loss of function was not due to a nonspecific gross conformational change, since the defective alpha(M)beta(2) mutants reacted well with a panel of conformation-dependent mAbs; 3) mutation of these functional sequences did not effect Ca(2+) binding; and 4) synthetic peptides corresponding to sequences Gln(199)-Ala(203) and Gly(305)-His(309) blocked ligand binding to alpha(M)beta(2), and the peptides interacted directly with fibrinogen and C3bi. Given the similarity among all integrin beta subunits, our results may help us to understand the underlying mechanism of integrin-ligand interactions in general.  相似文献   

16.
Various hybrid plasmids carrying a portion of the gene for the gamma subunit of the H+-ATPase of Escherichia coli complemented five mutants defective in the enzyme in a genetic test, indicating that the mutants are defective in the gamma subunit. Since the nucleotide sequence of genomic DNA carried on the plasmids is known, the defective site(s) of the mutants could be located within the gene for the gamma subunit as follows: KF10 and NR70, KF1, and KF12 and KF13 have a mutation causing a defect(s) in amino acid residues 1 to 82, 83 to 167, and 168 to 287, respectively, of the gamma subunit. The biochemical properties of all these mutants except NR70 were analyzed in terms of proton permeability of the membranes and assembly of F1. Results suggested that KF1 and KF10 have defective F1 without at least the alpha and beta subunits on their membranes, whereas KF12 and KF13 have F1's of rather similar structure to that of the wild type. Attempts were made to purify F1 oF KF12 as a single complex. Although the F1 complex dissociated during purification, active alpha and beta subunits of KF12 were partially purified. On the basis of these biochemical and genetic results, it is suggested that structural alterations in the primary sequence of the gamma subunit corresponding to residues 1 to 167 cause more extensive defects in the assembly of F1 than alteration in the sequence of residues 168 to 287.  相似文献   

17.
In F(1)-ATPase, a rotary motor enzyme, the region of the conserved DELSEED motif in the beta subunit moves and contacts the rotor gamma subunit when the nucleotide fills the catalytic site, and the acidic nature of the motif was previously assumed to play a critical role in rotation. Our previous work, however, disproved the assumption (Hara, K. Y., Noji, H., Bald, D., Yasuda, R., Kinosita, K., Jr., and Yoshida, M. (2000) J. Biol. Chem. 275, 14260-14263), and the role of this motif remained unknown. Here, we found that the epsilon subunit, an intrinsic inhibitor, was unable to inhibit the ATPase activity of a mutant thermophilic F(1)-ATPase in which all of the five acidic residues in the DELSEED motif were replaced with alanines, although the epsilon subunit in the mutant F(1)-ATPase assumed the inhibitory form. In addition, the replacement of basic residues in the C-terminal region of the epsilon subunit by alanines caused a decrease of the inhibitory effect. Partial replacement of the acidic residues in the DELSEED motif of the beta subunit or of the basic residues in the C-terminal alpha-helix of the epsilon subunit induced a partial effect. We here conclude that the epsilon subunit exerts its inhibitory effect through the electrostatic interaction with the DELSEED motif of the beta subunit.  相似文献   

18.
In F1-ATPase, the rotation of the central axis subunit gamma relative to the surrounding alpha3beta3 subunits is coupled to ATP hydrolysis. We previously reported that the introduced regulatory region of the gamma subunit of chloroplast F1-ATPase can modulate rotation of the gamma subunit of the thermophilic bacterial F1-ATPase (Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., and Hisabori, T. (2001) J. Biol. Chem. 276, 39505-39507). The attenuated enzyme activity of this chimeric enzyme under oxidizing conditions was characterized by frequent and long pauses of rotation of gamma. In this study, we report an inverse regulation of the gamma subunit rotation in the newly engineered F1-chimeric complex whose three negatively charged residues Glu210-Asp211-Glu212 adjacent to two cysteine residues of the regulatory region derived from chloroplast F1-ATPase gamma were deleted. ATP hydrolysis activity of the mutant complex was stimulated up to 2-fold by the formation of the disulfide bond at the regulatory region by oxidation. We successfully observed inverse redox switching of rotation of gamma using this mutant complex. The complex exhibited long and frequent pauses in its gamma rotation when reduced, but the rotation rates between pauses remained unaltered. Hence, the suppression or activation of the redox-sensitive F1-ATPase can be explained in terms of the change in the rotation behavior at a single molecule level. These results obtained by the single molecule analysis of the redox regulation provide further insights into the regulation mechanism of the rotary enzyme.  相似文献   

19.
Shi XB  Wei JM  Shen YK 《Biochemistry》2001,40(36):10825-10831
Ten truncated mutants of chloroplast ATP synthase epsilon subunit from spinach (Spinacia oleracea), which had sequentially lost 1-5 amino acid residues from the N-terminus and 6-10 residues from the C-terminus, were generated by PCR. These mutants were overexpressed in Escherichia coli, reconstituted with soluble and membrane-bound CF(1), and the ATPase activity and proton conductance of thylakoid membrane were examined. Deletions of as few as 3 amino acid residues from the N-terminus or 6 residues from the C-terminus of epsilon subunit significantly affected their ATPase-inhibitory activity in solution. Deletion of 5 residues from the N-terminus abolished its abilities to inhibit ATPase activity and to restore proton impermeability. Considering the consequence of interaction of epsilon and gamma subunit in the enzyme functions, the special interactions between the epsilon variants and the gamma subunit were detected in the yeast two-hybrid system and in vitro binding assay. In addition, the structures of these mutants were modeled through the SWISS-MODEL Protein Modeling Server. These results suggested that in chloroplast ATP synthase, both the N-terminus and C-terminus of the epsilon subunit show importance in regulation of the ATPase activity. Furthermore, the N-terminus of the epsilon subunit is more important for its interaction with gamma and some CF(o) subunits, and crucial for the blocking of proton leakage. Compared with the epsilon subunit from E. coli [Jounouchi, M., Takeyama, M., Noumi, T., Moriyama, Y., Maeda, M., and Futai, M. (1992) Arch. Biochem. Biophys. 292, 87-94; Kuki, M., Noumi, T., Maeda, M., Amemura, A., and Futai, M. (1988) J. Biol. Chem. 263, 4335-4340], the chloroplast epsilon subunit is more sensitive to N-terminal or C-terminal truncations.  相似文献   

20.
MgATP positively regulates the dimerisation reaction, resulting in an increase in the rate of MgATP splitting with increasing MgATP concentration. We investigated the stoichiometry of this dimerisation reaction and found that each subunit in the dimer bound one molecule of MgATP at the dimerisation site. We studied changes with temperature in the MgATPase activity of S1 in the dimeric form for temperatures of 18-25 degrees C. Between 18.0 and 21.2 degrees C, kcat increased steadily with temperature. Between 21.2 and 21.8 degrees C, there was a large decrease in kcat. A strong increase in kcat occurred at temperatures above 21.8 degrees C, corresponding to a new reversible conformation of S1, unable to dimerise. The steep decrease in kcat between 21.2 and 21.8 degrees C is due to a temperature transition in the monomer-dimer equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号