首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The photosynthetic capacity and carbon metabolism of the fruits of Isomeris arborea (Capparidaceae), an evergreen shrub endemic to the desert and coastal habitats of Southern California and Baja California, are described. The inflated structure of the pods of I. arborea provides a model system for experimental studies of fruit photosynthesis in native plants since the gas concentration of the internal space can be manipulated and monitored separately from the external pod environment. CO2 released by seed respiration is partially contained in the inner gas space of the pods, resulting in an elevated CO2 environment inside the fruit (500 to 4000 mol mol–1 depending on the stage of fruit development). A portion of this CO2 is assimilated by the inner layers of the pericarp, but a larger fraction leaks out. The photosynthetic layers of the pericarp use two different sources of CO2: the exocarp fixes exogenous CO2 while the endocarp fixes CO2 released by seed respiration into the pod cavity. Even though the total weight of the fruit increases during development, the combined rates of fixation of externally and internally supplied CO2 remained constant (10–11 mol CO2 pod–1 h–1). After the pods attain maximum volume, the major change in gas exchange that takes place during fruit growth is a gradual increase in the amount of respiratory CO2 released by the seeds. This shifts the CO2 balance of the fruit from positive, in young fruits, to negative in mature fruits. Pericarp photosynthesis helped support not only the cost of fruit maintenance, but also the cost of fruit growth, particularly during the first stages of fruit development. During later fruiting stages insufficient carbon is fixed to fully supply either respiration or growth.  相似文献   

2.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

3.
We measured CO2 efflux from stems of two tropical wet forest trees, both found in the canopy, but with very different growth habits. The species were Simarouba amara, a fast-growing species associated with gaps in old-growth forest and abundant in secondary forest, and Minquartia guianensis, a slow-growing species tolerant of low-light conditions in old-growth forest. Per unit of bole surface, CO2 efflux averaged 1.24 mol m–2 s–1 for Simarouba and 0.83 mol m–2s–1 for Minquartia. CO2 efflux was highly correlated with annual wood production (r 2=0.65), but only weakly correlated with stem diameter (r 2=0.22). We also partitioned the CO2 efflux into the functional components of construction and maintenance respiration. Construction respiration was estimated from annual stem dry matter production and maintenance respiration by subtracting construction respiration from the instantaneous CO2 flux. Estimated maintenance respiration was linearly related to sapwood volume (39.6 mol m–3s–1 at 24.6° C, r 2=0.58), with no difference in the rate for the two species. Maintenance respiration per unit of sapwood volume for these tropical wet forest trees was roughly twice that of temperate conifers. A model combining construction and maintenance respiration estimated CO2 very well for these species (r 2=0.85). For our sample, maintenance respiration was 54% of the total CO2 efflux for Simarouba and 82% for Minquartia. For our sample, sapwood volume averaged 23% of stem volume when weighted by tree size, or 40% with no size weighting. Using these fractions, and a published estimate of aboveground dry-matter production, we estimate the annual cost of woody tissue respiration for primary forest at La Selva to be 220 or 350 g C m–2 year–1, depending on the assumed sapwood volume. These costs are estimated to be less than 13% of the gross production for the forest.  相似文献   

4.
Bärlocher  M.O.  Campbell  D.A.  Al-Asaaed  S.  Ireland  R.J. 《Photosynthetica》2003,41(3):365-372
We investigated seasonal patterns of photosynthetic responses to CO2 concentrations in Spartina alterniflora Loisel, an aerenchymous halophyte grass, from a salt marsh of the Bay of Fundy (NB, Canada), and from plants grown from rhizome in controlled-environment chambers. From late May to August, CO2 compensation concentrations () of field-grown leaves varied between 2.5–10.7 cm3(CO2) m–3, with a mean of 5.4 cm3(CO2) m–3. From September onwards field leaves showed CO2 compensation concentrations from 6.6–21.1 cm3(CO2) m–3, with a mean of 13.1 cm3 m–3 well into the C3–C4 intermediate range. The seasonal variability in did not result from changing respiration, but rather from a sigmoidal response of net photosynthetic rate (P N) to applied CO2 concentration, found in all tested leaves but which became more pronounced late in the season. One explanation for the sigmoidal response of P N to external CO2 concentration could be internal delivery of CO2 from roots and rhizomes to bundle sheath cells via the aerenchyma, but the sigmoidal responses in S. alterniflora persisted out to the tips of leaves, while the aerenchyma extend only to mid-leaf. The sigmoidicity persisted when CO2 response curves were measured from low to high CO2, or from high to low CO2, and even when prolonged acclimation times were used at each CO2 concentration.  相似文献   

5.
Woody tissue maintenance respiration of four conifers in contrasting climates   总被引:21,自引:0,他引:21  
We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 mol CO2 m–3 s–1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52–162 g C m–2 y–1, or 5–13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.  相似文献   

6.
The daily variations in the in situ CO2 exchange of the reproductive organs of Durio zibethinus trees, growing in an experimental field at University Putra Malaysia (UPM), were examined at different growth stages. Reproductive organs emerged on the leafless portions of branches inside the crown. The photon flux densities (PFD) in the chambers used for the measurements were less than 100 mol m–2 s–1 and were 40% of the PFD outside of the crown. The daytime net respiration rate and the nighttime dark respiration rate were higher at the time of flower initiation and during the mixed stages, when flower buds, flowers, and fruit coexist, than at the flower bud stage. The net respiration rate was lower than the daytime dark respiration rate at given temperatures, especially at the flower bud and fruit stages. Conversely, the net respiration rate was similar to the daytime dark respiration rate at the mixed stage. Photosynthetic CO2 refixation reduced the daily respiratory loss by 17, 5, 0.3, and 24% at the flower bud, flower initiation, mixed, and fruit stages, respectively.  相似文献   

7.
M. M. Babiker 《Hydrobiologia》1984,110(1):351-363
The respiratory behaviour and partitioning of O2 uptake between air and water were investigated in Polypterus genegalus using continuous-flow and two-phase respirometers and lung gas replacement techniques P. senegalus rarely resorts to aerial respiration under normal conditions. Partitioning of O2 consumption depends on the activity and age of fish and the availability of aquatic oxygen. Immature fish (12–22 g) cannot utilize aerial O2 but older fish exhibit age-dependent reliance on aerial respiration in hypoxic and hypercarbic waters. Pulmonary respiration accounts for 50% of the total requirement at aquatic O2 concentrations of about 3.5 mg · l–1 (or CO2 of about 5%) and fish rely exclusively on aerial respiration at O2 concentrations of less than 2.5 mg · l–1. Branchial respiration is initially stimulated by hypercarbia (CO2: 0.5–0.8%) but increased hypercarbia (CO2 – 1%) greatly depresses (by over 90%) brancial respiration and initiates (CO2: 0.5%) and sustains pulmonary respiration.  相似文献   

8.
Summary Measurements and modeling of photosynthesis, respiration and growth in flowers of Diplacus aurantiacus, a semidrought-deciduous shrub, indicate that they can provide 18%–25% of their total carbon requirements through photosynthesis of flower parts. Daily photosynthetic carbon fixation exceeds daily respiratory CO2 loss during most non-fruiting stages of development. However, this carbon gain fails to meet the requirements for new biomass construction during bud growth and corolla expansion. During fruiting stages, insufficient carbon is fixed to fully supply either respiration or growth.The calyx performs most of the flower's photosynthesis throughout the life of the flower. However, during stages of fruit development, the contribution of the ovary to flower photosynthesis may equal that of the calyx.  相似文献   

9.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

10.
P.-O. Lundquist 《Plant and Soil》2005,273(1-2):235-244
The carbon cost of nitrogenase activity was investigated to determine symbiotic efficiency of the actinorhizal root nodule symbiosis between the woody perennial Alnus incana and the soil bacterium Frankia. Respiration (CO2 production) and nitrogenase activity (H2 production) by intact nodulated root systems were continuously recorded in short-term assays in an open-flow gas exchange system. The assays were conducted in N2:O2, thus under N2-fixing conditions, in all experiments except for one. This avoided the declines in nitrogenase activity and respiration due to N2 deprivation that occur in acetylene reduction assays and during extended Ar:O2 exposures in H2 assays. Two approaches were used: (i) direct estimation of root and nodule respiration by removing nodules, and (ii) decreasing the partial pressure of O2 from 21 to 15% to use the strong relationship between respiration and nitrogenase activity to calculate CO2/H2. The electron allocation of nitrogenase was determined to be 0.6 and used to convert the results into moles of CO2 produced per 2e transferred by nitrogenase to reduction of N2. The results ranged from 2.6 to 3.4mol CO2 produced per 2e. Carbon cost expressed as gC produced per gN reduced ranged from 4.5 to 5.8. The result for this actinorhizal tree symbiosis is in the low range of estimates for N2-fixing actinorhizal symbioses and crop legumes. Methodology and comparisons of root nodule physiology among actinorhizal and legume plants are discussed.  相似文献   

11.
Single leaf photosynthesis (Pn) and stomatal conductance (Cg) of drought stressed and nonstressed pearl millet [Pennisetum americanum (L.) Leeke] were measured across growth stages to determine if a pattern exists in Pn and Cg during the growing season and to evaluate the influence of air vapor pressure deficit (VPDa) on the seasonal variations of Pn and Cg. Leaf photosynthesis and Cg were measured independently on pearl millet plants grown at the driest (drought stressed) and wettest (nonstressed) ends of a line-source irrigation gradient system. Well defined and predictable variations in both Pn and Cg were found across two growing seasons. Leaf photosynthesis of the nonstressed plants declined from a maximumof 25.8 mol m–2 s–1 at the flag leaf emergence (48 days after planting, DAP) to a minimum of 14.5 mol m–2 s–1 at physiological maturity. Stomatal conductance of the nonstressed plants peaked at the flowering and early grain fill stages and declined as plants approached maturity. In contrast, Pn and Cg of the stressed plants declined from a maximum at flag leaf emergence to a minimum at flowering and increased as plants approached maturity. High VPDa during the flowering and grain fill stages induced stomatal closure and decreased Pn in the stressed plants. High mid-season VPDa did not induce stomatal closure and did not reduce leaf photosynthesis in nonstressed plants. The lack of sensitivity of Pn to VPDa in the nonstressed treatment suggests large air VPD such as that prevalent in southern Arizona does not limit the growth of irrigated pearl millet by limiting CO2 assimilation.Abbreviations Cg stomatal conductance - DAP days after planting - Pn leaf photosynthesis - VPDa air vapor pressure deficit - VPD1-a leaf to air vapor pressure deficit Contribution of the Arizona Agricultural Experimental Station. Research supported in part by INTSORMIL/USAID.  相似文献   

12.
Total stem, branch, twig, and coarse root respiration (Rt) of an adult Pinus cembra tree at the alpine timberline was measured continuously at ten positions from 7 October 2001 to 21 January 2003 with an automated multiplexing gas exchange system. There was a significant spatial variability in woody tissue respiration when expressed per unit surface area or per unit sapwood volume. Surface area related maintenance (Rm) respiration at 0°C ranged between 0.109 and 0.643 mol m–2 s–1 and there was no clear trend with respect to tissue type and diameter. Sapwood volume based Rm at 0°C by contrast, varied between 2.5 mol m–3 s–1 in the stem and 193.2 mol m–3 s–1 in thin twigs in the upper crown. Estimated Q10 values ranged from 1.7 to 3.1. These Q10 values were used along with Rm at 0°C and annual woody tissue temperature records to predict annual total Rm. Annual total Rm accounted for 73±6% of annual Rt in 2002.  相似文献   

13.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

14.
Kellomäki  S.  Wang  Kai-Yun  Lemettinen  M. 《Photosynthetica》2000,38(1):69-81
A closed CO2 and temperature-controlled, long-term chamber system has been developed and set up in a typical boreal forest of Scots pine (Pinus sylvestris L.) near the Mekrijärvi Research Station (62°47N, 30°58E, 145 m above sea level) belonging to the University of Joensuu, Finland. The main objectives of the experiment were to provide a means of assessing the medium to long-term effects of elevated atmospheric CO2 concentration (EC) and temperature (ET) on photosynthesis, respiration, growth, and biomass at the whole-tree level and to measure instantaneous whole-system CO2 exchange. The system consists of 16 chambers with individual facilities for controlling CO2 concentration, temperature, and the combination of the two. The chambers can provide a wide variety of climatic conditions that are similar to natural regimes. In this experiment the target CO2 concentration in the EC chambers was set at a fixed constant of 700 µmol mol–1 and the target air temperature in the ET chambers to track the ambient temperature but with a specified addition. Chamber performance was assessed on the base of recordings covering three consecutive years. The CO2 and temperature control in these closed chambers was in general accurate and reliable. CO2 concentration in the EC chambers was within 600–725 µmol mol–1 for 90 % of the exposure time during the "growing-season" (15 April – 15 September) and 625–725 µmol mol–1 for 88 % of the time in the "off-season" (16 September – 14 April), while temperatures in the chambers were within ±2.0 °C of the ambient or target temperature in the "growing season" and within ±3.0 °C in the "off season". There were still some significant chamber effects. Solar radiation in the chambers was reduced by 50–60 % for 82 % of the time in the "growing season" and 55–65 % for 78 % of the time in the "off season", and the relative humidity of the air was increased by 5–10 % for 72 % of the time in the "growing season" and 2–12 % for 91 % of the time in the "off season". The crown architecture and main phenophase of the trees were not modified significantly by enclosure in the chambers, but some physiological parameters changed significantly, e.g., the radiant energy-saturated photosynthesis rate, transpiration rate, maximum photochemical efficiency of photosystem 2, and chlorophyll content.  相似文献   

15.
Summary The endogenous respiration of 14C-labelled spores of B. cereus was measured through the 14CO2 produced, and the rate expressed as Q (l CO2/hxmg). New upper limits for respiration in various conditions have been set.Dry spores had no measurable activity; Q<10–4 at room temperature and <10–3 at 35° C. For wet spores of different harvests, at 30°C, Q lay between 0.0013 to 0.067. Near 40° C, respiration showed a maximum. Thermal history has a great influence on Q. CO2 production by heat-killed spores is attributed largely to infection.Water or 10–3 m sodium phosphate buffer (pH=6.5) gave equal spore respiration, in strong NaCl it was less. Azide enhanced respiration dramatically. A temporary increase was also found with non-radioactive glucose. Exogenous respiration of spores in glucose exceeded endogenous respiration.Endogenous and exogenous respiration of vegetative forms were much larger than those of spores and were time-dependent. The ratio of minimum (endogenous, dry spores) and maximum (exogenous, wet vegetative cells) respiration was at least 3x105.  相似文献   

16.
Various ecophysiological investigations on carnivorous plants in wet soils are presented. Radial oxygen loss from roots of Droseraceae to an anoxic medium was relatively low 0.02 – 0.07 mol(O2) m– 2 s–1 in the apical zone, while values of about one order of magnitude greater were found in both Sarracenia rubra roots and Genlisea violacea traps. Aerobic respiration rates were in the range of 1.6 – 5.6 mol kg–1 (f.m.) s–1 for apical root segments of seven carnivorous plant species and 0.4 – 1.1 mol kg–1 (f.m.) s–1 for Genlisea traps. The rate of anaerobic fermentation in roots of two Drosera species was only 5 – 14 % of the aerobic respiration. Neither 0.2 mM NaN3 nor 0.5 mM KCN influenced respiration rate of roots and traps. In all species, the proportion of cyanide-resistant respiration was high and amounted to 65 – 89 % of the total value. Mean rates of water exudation from excised roots of 12 species ranged between 0.4 – 336 mm 3 kg–1 (f.m.) s–1 with the highest values being found in the Droseraceae. Exudation from roots was insensitive to respiration inhibitors. No significant difference was found between exudation rates from roots growing in situ in anoxic soil and those kept in an aerated aquatic medium. Carnivorous plant roots appear to be physiologically very active and well adapted to endure permanent soil anoxia.  相似文献   

17.
The CO2 concentration of the atmosphere has increased by almost 30% in the past two centuries, with most of the increase (>5 Pa) during the past 60 years. Controlled environment studies of crop plants dependent on the C3 photosynthetic pathway indicate that an increase of this magnitude would enhance net photosynthesis, reduce stomatal conductance, and increase the difference in CO2 concentration across the stomata, i.e., CO2 concentration outside the leaf to that within (c a-c i). Here we report evidence, based on stable isotope composition of tree rings from three species of field-grown, native conifer trees, that the trees have indeed responded. However, rather than increasing c a-c i, intercellular CO2 concentrations have shifted upward to match the rise in atmospheric concentrations, holding c a-c i constant. No differences were detected among Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), or western white pine (Pinus monticola). The values of c a-c i were inferred from stable carbon isotope ratio (13C) of tree ring holocellulose adjusted for the 0.6–2.6 difference between holocellulose and whole sapwood. The cellulose extraction removed contaminants deposited in the tree ring after it formed and the adjustment corrected for the enrichment of cellulose relative to whole tissue. The whole sapwood values were then adjusted for bublished estimates of past atmospheric 13CO2 and CO2 concentrations. To avoid confounding tree age with CO2, cellulose deposited by saplings in the 1980s was compared to cellulose deposited in the inner rings of nature trees when the mature trees were saplings, between 1910–1929 and 1941–1970; thus saplings were compared to saplings. In a separate analysis, the juvenile effect, which describes the tendency for 13C to increase in the first decades of a tree's life, was quantified independent of source CO2 effects. This study provides evidence that conifers have undergone adjustments in the intercellular CO2 concentration that have maintained c a-c i constant. Based on these results and others, we suggest that c a-c i, which has also been referred to as the intrinsic water-use efficiency, should be considered a homeostatic gas-exchange set point for these conifer species.  相似文献   

18.
Single leaf photosynthetic characteristics of Alnus glutinosa, A. incana, A. rubra, Elaeagnus angustifolia, and E. umbellata seedlings conditioned to ambient sunlight in a glasshouse were assessed. Light saturation occurred between 930 and 1400 mol m-2s-1 PAR for all species. Maximum rates of net photosynthesis (Pn) measured at 25°C ranged from 12.8 to 17.3 mol CO2m-2s-1 and rates of dark respiration ranged from 0.74 to 0.95 mol CO2m-2s-1. These values of leaf photosynthetic variables are typical of early to midsuccessional species. The rate of Pn measured at optimal temperature (20°C) and 530mol m-2s-1 PAR was significantly (p<0.01) correlated with leaf nitrogen concentration (r=0.69) and negatively correlated with the mean area of a leaf (r=–0.64). We suggest that the high leaf nitrogen concentration and rate of Pn observed for Elaeagnus umbellata and to a lesser degree for E. angustifolia are genetic adaptations related to their crown architecture.Abbreviations Pn net photosynthesis  相似文献   

19.
Beside being an ordinary fermenter, the present equipment was conceived to sample the medium, to store the samples and to record photographs of the yeasts. Ten sensors were used to measure gas exchanges. During the growth of ScM1 (a Saccharomyces cerevisiae strain) on glucose, we could observe two different linear decreases of CO2 production rates (18.17±0.12 mmol CO2 h–2 (g biomass)–1 and 8.67±0.12 mmol CO2 h–2 (g biomass)–1), together with a sudden variation of slope during the respiro-fermentative phase. Nomenclature Fin InletairFlowl h –1 Fout OutletgasFlowl h –1 in Inletairtemperature°Cout Outletgastemperature°CP atm AtmosphericPressuremmHgP in InletairOverPressuremmHgP out OutletgasOverPressuremmHgDODissolvedO 2 mg l–1 pO2 PartialPressureO 2 in Outlet gas % (v/v) pCO2 PartialPressureCO 2 in Outlet gas % (v/v) Int(t) Whole number of hours  相似文献   

20.
Hu H  Gao K 《Biotechnology letters》2003,25(5):421-425
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 l CO2 l–1 and aeration gave the highest biomass yield (634 mg dry wt l–1), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g–1 dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:53) (16 mg g–1 dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号