首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Ling EA 《Tissue & cell》1969,1(3):503-524
The structure of the organ has been studied by light- and electron-microscopy. The organ is composed of both glandular and neural cells. The glandular cells pour their secretions into a ciliated tube which connects the organ with the external medium. Within the organ lobule, the tube forms three right-angled bends and is divided longitudinally into ingoing and outgoing channels by the adhesion of two groups of dilated cilia arising from opposite sides of the canal epithelium. Neural elements, backing the ciliated cells, constitute a possible neural chain to the central nervous system. The function of the organ is discussed.  相似文献   

2.
1. A modified canine tracheal organ culture system was used to investigate differences between mucous secretions of epithelial goblet cells and the submucosal glands. 2. Denuded explants were prepared by removing goblet, ciliated and basal cells from the surface epithelium leaving an intact basement membrane and viable submucosa. 3. Denuded explants actively incorporated radioactive precursors into secreted macromolecules when cultured in medium 199 containing label. 4. Chromatography on Bio-Gel A-150m and electrophoresis on 1% agarose gels indicated that epithelial goblet cell secretions were relatively more sulphated than submucosal glandular secretions. 5. The glandular structures were shown to respond to a parasympathomimetic agent.  相似文献   

3.
ABSTRACT The fine structure of female accessory reproductive gland (FARG) of the adult mealworm beetle, Tenebrio molitor is studied with light and electron microscopes. The FARG is a simple tubular organ that composed of two kinds of cells-secretory epithelial cells and duct forming cells. The lumen of FARG is lined with a thin cuticle and filled with secretory materials. Each secretory epithelial cell has its peculiar end apparatus in addition to well-developed rough endoplasmic reticulum (rER), mitochondria, and secretory vesicles. They are forming basal infolding along the plasma membrane. Along the inner surface of the plasma membrane, numerous secretory vesicles are seen. The glandular secretions of the epithelial secretory cells are synthesized via rER to Golgi apparatus, and are stored in the extracellular cavity in the epithelial cell. These secretions are drained to the lumen through the end apparatus and this type of glandular secretion in the insects is type III. Histochemical reactions reveal the major component of these glandular secretions is an acid mucopolysaccharide.  相似文献   

4.
Two groups of external excretory pores associated with glandular units (AU and LPU) were observed on the labrum, one pair laterally and three pairs posteriorly. Each external pore leads to an underlying conical, flask-shaped epidermal chamber. The wide base of this chamber is perforated by an internal pore that delivers secretions from the excretory duct of a glandular unit. The chambers serve to protect the internal pores from turbulence in the outside environment. Expulsion of secretions from the chambers is probably brought about by contraction of labral striated muscles, which synchronizes opening of the AU and LPU pores. A complex funnel-shaped structure forms the internal end of the excretory duct between each chamber and the corresponding pole of accumulation for the secretory product of a glandular unit. This structure, composed of an epidermal syncytium lined by a sleeve of several aligned auxiliary cells, probably ensures a tight connection between the epidermal chamber and the syncytium. The dorsalmost glandular units (LDU) have no pores in the vicinity of their poles of accumulation. Instead they secrete through cuticular ducts delimited by aligned auxiliary cells. External pores for these canals have not yet been located. The secretions of lateral pores may be mucopolysaccharides that play an essential role in agglutination of food particles soon after capture, while the secretions of posterior pores may contain glycoproteins that mix with food only after ingestion into the buccal cavity and probably start the process of digestion.  相似文献   

5.
《Journal of morphology》2017,278(6):791-800
African lungfish (Protopterus ) seem unique among osteognathostomes in possessing a potential vomeronasal organ homolog in form of accessory epithelial crypts within their nasal cavity. Many details regarding structural and functional properties of these crypts are still unexplored. In this study, we reinvestigate the issue and also present the first data on epithelial crypts in the South American lungfish Lepidosiren paradoxa . The nasal cavities of L. paradoxa and Protopterus annectens were studied using histology, scanning electron microscopy, and alcian blue and PAS staining. In both species, the epithelial crypts consist of a pseudostratified sensory epithelium and a monolayer of elongated glandular cells, in accordance with previously published data on Protopterus . In addition, we found a new second and anatomically distinct type of mucous cell within the duct leading into the crypt. These glandular duct cells are PAS positive, whereas the elongated glandular cells are stainable with alcian blue, suggesting distinct functions of their respective secretions. Furthermore, the two lungfish species show differently structured crypt sensory epithelia and external crypt morphology, with conspicuous bilaterally symmetrical stripes of ciliated cells in L. paradoxa . Taken together, our data suggest that stimulus transport into the crypts involves both ciliary movement and odorant binding mucus.  相似文献   

6.
A. Clavert 《Andrologie》1992,2(2):68-69
The biochemical analysis of seminal plasma provides information on the functional status of the male accessory glands. A semen analysis evaluates the relative contribution of these various secretions as well as the presence of leukocytes. Measurements of specific markers for prostatic, vesicular and epididymal secretions are indicative of glandular function, and similarly markers of inflammatory response(s) can presage infections. Furthermore, such assays may be diagnostic of the level of an obstruction or the severity of glandular dysfunction.  相似文献   

7.
为进行中药溪黄草基原植物的品种鉴定,采用光镜和电镜对线纹香茶菜(原变种)[Isodon lophanthoides var.lophanthoides]叶上腺毛的发育进行细胞学研究。结果表明,线纹香茶菜具有头状腺毛和盾状腺毛2种类型。头状腺毛无色透明,由1个基细胞、1个柄细胞和1或2个头部分泌细胞构成;盾状腺毛为红色,由1或2个基细胞、1个柄细胞和4~8个分泌细胞构成头部。2种腺毛均由原表皮细胞经两次平周分裂形成,后因柄细胞和头部细胞所处的分化状态不同而形成两类腺毛。2种腺毛超微结构表明,质体、高尔基体和粗面内质网为主要分泌物产生和运输的细胞器。当盾状腺毛成熟时,角质层下间隙充满了分泌物,其分泌物的性质很可能决定了线纹香茶菜腺毛的颜色。  相似文献   

8.
Summary The fine structure of the cerebral organs is described in three species of monostiliferous hoplonemerteans. Amphiporus lactifloreus, Paranemertes peregrina and Tetrastemma candidum. There are two distinct groups of sensory cells in the cerebral organs of all three species. The ultrastructure of the sensory elements in these species is consistent with a chemoreceptive function of the dendrites. Incurrent and excurrent channels of the canal are postulated, based on the fine structure of the ciliary axonemes. Flow through the canal is such that each of the two groups of dendrites is downstream from a group of glandular cell outlets and upstream from a group of vesicular cells. It is suggested that the glandular, sensory and vesicular cells form a functional unit in which glandular cells secrete a coating material over the dendrites and vesicular cells actively remove this coating by endocytosis. Vesicular material is also found in glandular cells, where it probably arises in situ through crinophagy. There is no ultrastructural evidence that vesicular material is transferred to the vascular system. Small fibres containing dense vesicles are present among the ciliated cells and may represent an efferent nerve supply controlling the rate of flow through the canal.  相似文献   

9.
The retrocerebral organ (RCO) is a complex glandular system that is widely distributed across species of phylum Rotifera (sensu stricto). This system is hypothesized to secrete mucus that aids in benthic locomotion, adhesion, and/or reproduction. Unfortunately, the ultrastructure of the RCO is mostly unknown, having only been partially examined in one species. We used transmission electron microscopy and confocal laser scanning microscopy to describe the RCO in the planktonic freshwater rotifer Trichocerca similis. Results reveal the RCO to be a singular syncytial organ composed of a posterior glandular region, an expansive reservoir, and an anterior duct. The glandular portion has an active synthetic cytoplasm with paired nuclei, abundant rER, ribosomes, Golgi, and mitochondria. Electron-dense secretion granules accumulate at the anterior end of the gland and undergo homotypic fusion to create larger, more electron-lucent granules with numerous mesh-like contents that gradually fuse into tubular secretions that accumulate in the reservoir. Ultrastructure of these secretions suggests they may be hydrated glycoproteins. Cross-striated longitudinal muscles form a partial sleeve around the reservoir and may function to squeeze the secretions through the single cytoplasmic duct that penetrates the cerebral ganglion. A review of the RCOs from other rotifers suggests that further ultrastructural analyses are required before attempting to discern their functions and homologies.  相似文献   

10.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
The venom system of Nasonia vitripennis is well-developed and composed of an unbranched acid gland and associated reservoir. Fine-structural, histochemical and electrophoretic studies indicate that the venom is produced by two protein-secreting epithelia. The bulk of the venom is synthesised in the columnar cells of the acid gland and discharged via “vesicular organelles” and the efferent ductular system into the lumen of the reservoir. The acid gland also contains squamous chitogenous cells, situated either around the central lumen or interposed between the bases of the columnar cells. Once within the reservoir, the venom is probably activated by enzymatic secretions from the reservoir secretory cells. Each of these cells has a “vesicular organelle” but, in contrast to the columnar cells of the acid gland, the cytoplasm contains a preponderance of free ribosomes, and protein segregation apparently occurs outside the Golgi complexes. The venom is expelled through the efferent discharge duct by muscular contractions, which open the duct lumen and bring it into contact with the funnel of the ovipositor. Excessive distortion of the duct is prevented by a massive ventral ligament.  相似文献   

12.
Incubation of cultured cells in hypertonic medium and sodium-free medium have been shown to block transport at two different stages along the endocytic pathway. To determine the effects of these treatments on the exocytic pathway, we studied the transport of the membrane glycoprotein of vesicular stomatitis virus (VSV-G) in cells infected with tsO45 mutant virus. This mutant synthesizes a VSV-G that accumulates in the endoplasmic reticulum (ER) when cells are incubated at 39.5 degrees C. In addition, VSV-G accumulates in the post-ER pre-Golgi compartment when cells are incubated at 15 degrees C and in the trans-Golgi network (TGN) when cells are incubated at 18 degrees C. Upon transfer of cells to 32 degrees C in control medium, VSV-G exits each of these compartments and is transported to the cell surface. Incubation in sodium-free medium at 32 degrees C did not block transport from any of these three compartments. In contrast, incubation in hypertonic medium blocked export from the ER, transport from the pre-Golgi compartment to the Golgi complex, and transport from the TGN to the cell surface. Our results, in combination with previous studies, suggest that hypertonic medium blocks at least five distinct transport steps; the three exocytic steps described here, endocytosis from the cell surface, and transport of cell surface proteins into the Golgi complex. This raises the possibility that vesicular transport in different parts of the cell shares common elements that are inhibited by this treatment.  相似文献   

13.
Mordacia mordax is one of the two anadromous parasitic lamprey species of the southern hemisphere family Mordaciidae. Its adults possess two lateral buccal glands and one central buccal gland. When the tongue-like piston is retracted, the buccal glands occupy much of the opening of the oral cavity at the rear of the buccal cavity. The glands contain numerous tube-like, ductless secretory units, which discharge directly into the buccal cavity. Their secretory epithelial cells contain numerous granules, some of which are zymogen-like, while others have a beaded, spiralled appearance. The similarity of the latter to mast cell granules suggests that they may likewise produce an anticoagulant, which would be valuable to a presumed blood feeder such as M. mordax. The mucus produced by these cells could act as a carrier for the secretions and as an adhesive for promoting retention of t he secretions on the host's surface. When the young adults is transferred to salt water, the buccal glands increase their production and discharge of secretions. Since the glands are not enclosed in musculature, their secretions are probably discharged by mechanical pressure applied by the forward movement of the head of the tooth-bearing piston into the buccal cavity. An account is given of the way in which the location, number, glandular organization, secretory granules, and type of secretion of the buccal glands of M. mordax, and thus presumably also their mode of function, differ markedly from those of members of the other lamprey family found in the southern hemisphere, and of all holarrctic lampreys. © 1995 Wiley-Liss, Inc.  相似文献   

14.
利用光学显微镜、扫描电镜和透射电镜技术,观察了龙葵“四叶一心”期时叶片及茎表皮的腺毛的种类、分布,探究了不同类型腺毛的起源、生长、成熟、分泌、衰老等发育过程的细胞学特征;通过组织化学染色和荧光显微技术,观察了龙葵腺毛成分、分布,为龙葵的进一步开发利用提供参考。结果表明:(1)龙葵腺毛分为单细胞头腺毛和多细胞头腺毛两类,前者主要分布于茎表面和叶上下表皮,后者主要分布于茎表面的单细胞头腺毛之间、叶脉及叶边缘;(2)龙葵腺毛发育起始于表皮细胞突起,单细胞头腺毛行顶端生长,具1-4个柄细胞,四种类型;多细胞头腺毛可再分为一层、两层与三层多细胞头腺毛,另具三种特殊类型;(3)龙葵成熟腺毛具分泌能力,通过皮下空间的物质积累导致腺毛头细胞表面形成突起、包块、破口,最终释放分泌物;而头细胞与柄细胞随即皱缩、衰老。(4)超微结构显示,腺毛头细胞中内质网与高尔基体极为丰富,合成代谢及分泌活动活跃,产生大量包裹嗜锇物质的囊泡,囊泡与细胞壁融合,进而将嗜锇物质转移至细胞壁并积累,随后储存在角质层下的皮下空间直至分泌释放;(5)组织化学染色结果表明,腺毛含有萜类、生物碱、脂类、蛋白质、酚类和多糖。头细胞中主要含有萜类、生物碱、脂类、蛋白质、酚类和中性多糖;柄细胞中主要含有萜类、生物碱、脂类。  相似文献   

15.
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.  相似文献   

16.
In this study the lingual and sublingual glands, the lingual stem and the epithelial surface of the protrusible secondary tongue were investigated by light, scanning and transmission electron microscopy. The quality of the secretions of the epithelia was characterized histochemically. The lingual epithelium is formed by superficial (pavement) and goblet cells and at the margin of the tongue pad are also regions covered by ciliated cells. On the dorsal part of the tongue there are goblet cells of type A with mainly acidic secretions and of type B containing neutral secretions. Most of the goblet cells on the ventral side of the tongue (hypoglottis) show a strong alcian blue/PAS positive reaction (type I) and some produce neutral secretions (type II). The glandular cells of the lingual gland react positively to alcian blue and PAS in the apical region of the gland. In contrast there is only alcian blue-positive staining in the basal part of the gland. The size and complexity of the inclusion bodies of the secretory granules increase in a basal direction. In addition, there are ciliated cells in the glandular epithelium. Although the epithelium of the lingual stem is thin, it is double-layered. The cell types observed in this region are identical to those of the ventral part of the protrusible tongue. At the margin of the sublingual gland are trough-like structures. In the center, tubular parts are observed. The cells of this gland are stain strongly with alcian blue (pH 1.0) mainly in the basal part of the gland. The results of this are compared to the tongue pad and the lingual gland of Salamandra salamandra and Ambystoma mexicanum.  相似文献   

17.
In the present article the anatomy and histology of the male genital system of an endeostigmatid mite are described for the first time. The Endeostigmata probably are a paraphyletic group supposed to include the most primitive actinotrichid mites. In Nanorchestes amphibius, the testis comprises a paired germinal region connected with an unpaired glandular region. In the germinal region, spermiogenesis takes place in cysts of a somatic cell containing germ cells representing the same developmental stage. In the lumen of the glandular region, the spermatozoa are stored together with secretions of the glandular epithelium. These secretions are probably involved in the formation of spermatophores. From the glandular region, spermatozoa and secretions are released into the vasa deferentia that histologically can be divided into three sections, beginning with a short paired region with strong circular muscles serving as a sphincter, continuing with a paired proximal zone, followed by a short unpaired distal section. The distal vas deferens leads into the chitinous, unpaired ductus ejaculatorius which is followed by the progenital chamber. The ductus ejaculatorius is composed of a proximal section and a proximal, central, and anterior chamber. It is accompanied by a complex system of muscles and sclerites probably involved in the formation and ejaculation of the spermatophore. A similar organization can also be found in Prostigmata, but not in Oribatida. Anterior to the progenital chamber is located a paired accessory gland that probably produces a lipid secretion. Spermiogenesis is characterized by disintegration of the nuclear envelope, condensation of chromatin, and extensive reduction of the amount of sperm cell cytoplasm. The mature aflagellate, U-shaped spermatozoa are simple in structure and lack mitochondria and an acrosome complex. The results do not support the current view that Nanorchestidae are more closely related to Sarcoptiformes, i.e., Oribatida and Astigmata, than to Prostigmata.  相似文献   

18.
Summary The male reproductive system of Labidocera aestiva produces a flask-shaped spermatophore connected to a chitin-like coupling apparatus. As immature spermatozoa leave the anterior region of the testis, they pass through the lumen of a long, sinuous duct composed of a ductus deferens and seminal vesicle. Ultrastructural examination of the ductus deferens reveals a highly glandular, columnar epithelium. The cells contain arrays of rough endoplasmic reticulum and abundant, well-developed Golgi complexes. This region produces and releases into the lumen, a flocculent substance and two granular secretions that constitute the seminal fluid. In its terminal part, the ductus deferens synthesizes another secretion that forms the spermatophore wall enclosing the spermatozoa and seminal fluid. Final synthesis of the spermatophore wall occurs within the thin-walled seminal vesicle, although this region functions primarily as a storage organ. Contiguous to the seminal vesicle is an elongate, highly glandular spermatophore sac. The chitin-like coupling apparatus, which functions to attach the spermatophore to the female, is formed in the anterior region of the sac by secretions from eight cell types. The posterior region of the sac stores the flask-shaped spermatophore and produces secretions that aid ejaculation of the entire spermatophore complex.Contribution No. 236, Harbor Branch Foundation, Inc.  相似文献   

19.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

20.
Odhiambo TR 《Tissue & cell》1969,1(1):155-182
The accessory reproductive glands of the male desert locust were studied by histological, histochemical, and phase-contrast techniques. It was found that the characteristics of the glandular epithelium and their corresponding secretions permit the division of the accessory glands into nine distinct types. Three types produce coarsely granular mucopolysaccharide secretions (glands 1, 11, and 12); three types produce finely fibrous mucopolysaccharide secretions (glands 2, 4, and 7-10, 13-15); one type produces a globular mucopolysaccharide or mucoproteinaceous secretion (gland 6); one type produces an acidic lipoprotein complex (glands 3 and 5); and one is the functional seminal vesicle (gland 16). Consequently, the various secretions are separated as a result of a vertical segregatign of the various cell types that are responsible for glandular activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号