共查询到20条相似文献,搜索用时 0 毫秒
1.
On specific dynamic action, turnover, and protein synthesis 总被引:1,自引:0,他引:1
2.
E.W. Taylor 《Journal of thermal biology》1981,6(4):239-248
Temperature variation effects respiration rate, acid-base balance and transport of respiratory gases by the haemolymph in crustaceans. Their responses to hypoxia and salinity variation are temperature dependent, as in the threshold for the onset of facultative air-breathing. 相似文献
3.
Antarctic marine invertebrates live in a cold, thermally stable environment and cannot tolerate large changes in body temperature (i.e. they are stenothermal). Their temperate relatives, by contrast, are eurythermal, living in warmer and thermally more variable environments. Have these different environments influenced how specific behaviours are affected by changes of temperature? This question was addressed in two temperate crustaceans, the decapod Carcinus maenas and isopod Ligia oceanica, and two Antarctic crustaceans, the isopod Glyptonotus antarcticus and amphipod Paraceradocus gibber. The thermal dependence of walking speed was analysed by contrasting the slopes of the linear part of each species’ behavioural curve. Over the temperature ranges analysed, the temperature sensitivity of walking speed in the stenotherms was 13–23% that of the eurytherms when measured in body lengths s?1. There was a linear relationship between walking speed and temperature up to +4.5°C in the Antarctic species G. antarcticus and P. gibber. Elevating temperature by up to 3.5°C above the maximum temperature experienced in the Antarctic (+1°C), does not lead to an acute breakdown of motor coordination. We describe for the first time the righting behaviour of G. antarcticus. The mean time-to-right tended to a minimum on warming from ?2 to+5°C, but this trend was not statistically significant. Our results suggest that the physiological adaptations which permit continued activity at low Antarctic temperatures have resulted in a lower thermal dependence of activity in Antarctic species, compared to related temperate species. 相似文献
4.
Luo Y Xie X 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2008,149(2):150-156
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough. 相似文献
5.
R P Wilson B M Culik 《Comparative biochemistry and physiology. A, Comparative physiology》1991,100(1):151-154
1. Resting metabolic rate was determined in Adelie penguins (Pygoscelis adeliae) that had been fed warm and cold ingesta. 2. Post-ingestion metabolic rate was found to be related to food temperature rather than to specific dynamic action. 3. Calorimetric calculations indicate that up to 13% of Adelie penguin daily energy expenditure may be used heating ingested food to body temperature. 4. Heating food costs are predicted to be higher in endotherms living in cold regions and in species with low assimilation efficiencies, but may be minimized by appropriate foraging behaviour. 相似文献
6.
Ultraviolet and temperature effects on planktonic rotifers and crustaceans in northern temperate lakes 总被引:2,自引:0,他引:2
1. Anthropogenic stressors such as climate change, ozone depletion and acidification may act in concert to alter ultraviolet (UV) light and temperature regimes in freshwater ecosystems. These physical and chemical changes will inevitably affect zooplankton community dynamics, but little is known about their relative effects on different species in natural communities. During spring, species that migrate to surface waters to take advantage of warmer temperatures may be especially vulnerable as UV levels can be high. 2. The objective of this study was to investigate the in situ effects of UV and temperature on a natural assemblage of planktonic rotifers and crustaceans during the spring. We performed in situ exposure experiments in two lakes with different surface temperatures. 3. Exposure to UV had a significant effect on the abundance and/or reproduction of four rotifers: Gastropus spp., Kellicottia bostonensis, Kellicottia longispina, Keratella spp.; two cladocerans: Holopedium gibberum, Daphnia catawba, and one copepod: Leptodiaptomus minutus. Incubation under cooler temperatures had a negative effect on K. longispina and H. gibberum. Temperature and UV had a significant interactive effect on abundance and/or reproduction of L. minutus and Ploesoma truncatum. Our results indicate that changes in underwater UV and temperature can significantly influence the composition of the zooplankton community and ultimately food web dynamics. 相似文献
7.
Effects of temperature on the specific dynamic action of the southern catfish, Silurus meridionalis.
Yiping Luo Xiaojun Xie 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2008,149(2):150-156
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough. 相似文献
8.
Secor SM Wooten JA Cox CL 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2007,177(2):165-182
Specific dynamic action (SDA), the increase in metabolism stemming from meal digestion and assimilation, varies as a function
of meal size, meal type, and body temperature. To test predictions of these three determinants of SDA, we quantified and compared
the SDA responses of nine species of anurans, Bombina orientalis, Bufo cognatus, Ceratophrys ornata, Dyscophus antongilli, Hyla cinerea, Kassina maculata, Kassina senegalensis, Pyxicephalus adspersus, and Rana catesbeiana subjected to meal size, meal type, and body temperature treatments. Over a three to seven-fold increase in meal size, anurans
experienced predicted increases in postprandial rates of oxygen consumption the duration of elevated and SDA. Meal type had a significant influence on the SDA response, as the digestion and assimilation of hard-bodied, chitinous
crickets, mealworms, and superworms required 76% more energy than the digestion and assimilation of soft-bodied earthworms,
waxworms, and neonate rodents. Body temperature largely effected the shape of the postprandial metabolic profile; peak increased and the duration of the response decreased with an increase in body temperature. Variation in body temperature
did not significantly alter SDA for four species, whereas both H. cinerea and R. catesbeiana experienced significant increases in SDA with body temperature. For 13 or 15 species of anurans ranging in mass from 2.4
to 270 g, SMR, postprandial peak and SDA scaled with body mass (log–log) with mass exponents of 0.79, 0.93, and 1.05, respectively. 相似文献
9.
Thor P 《Journal of experimental marine biology and ecology》2000,245(2):171-182
The link between specific dynamic action (SDA) and protein deposition was investigated in copepodites stage V of two calanoid copepod species, the neritic Acartia tonsa and the oceanic Calanus finmarchicus. This was done by measuring respiration before, during, and after a specific feeding period and measuring the incorporation of carbon into proteins. These were also measured on individuals incubated with cycloheximide, an antibiotic that inhibits protein synthesis. The cycloheximide treatment significantly diminished the magnitude of SDA in both A. tonsa and C. finmarchicus, and inhibited carbon incorporation into protein in both species. This provides evidence that the rate at which protein deposition takes place greatly affects the magnitude of SDA. The specific respiration rates of both starving and feeding copepods were generally higher in A. tonsa than in C. finmarchicus. This influenced SDA, the magnitude of SDA normalised to an 8 h feeding period being threefold higher in A. tonsa (78.7+/-25.7 nlO(2) μgC(-1)) than in C. finmarchicus (27.5+/-11.6 nlO(2) μgC(-1)). This difference may arise due to differences in energy allocation in the organisms of the copepodite V stage of the two species. In this stage C. finmarchicus deposits large quantities of storage lipids, predominately wax esters, whereas A. tonsa deposits proteins during somatic growth. 相似文献
10.
11.
12.
13.
Towards an explanation of specific dynamic action (SDA) 总被引:8,自引:0,他引:8
M. Jobling 《Journal of fish biology》1983,23(5):549-555
Of the hypotheses proposed to explain specific dynamic action (SDA), it is suggested that the 'protein synthesis/growth' theory offers the best basis for further research. In the light of this, the relationships between rates of protein synthesis and metabolic rates are examined. Both of which are depressed with increasing periods of starvation and there appears to be a link between rates of protein synthesis and thyroid activity. SDA may represent a short-term increase in rates of protein synthesis and turnover following feeding and the process is possibly regulated via plasma levels of thyroid hormones. 相似文献
14.
We present the first data on the effect of hypoxia on the specific dynamic action (SDA) in a teleost fish. Juvenile cod (Gadus morhua) were fed meals of 2.5% and 5% of their wet body mass (BM) in normoxia (19.8 kPa Po(2)) and 5% BM in hypoxia (6.3 kPa Po(2)). Reduced O(2) availability depressed the postprandial peaks of oxygen consumption, and to compensate for this, the total SDA duration lasted 212.0+/-20 h in hypoxia, compared with 95.1+/-25 h in normoxia. The percentage of energy associated with the meal digestion and assimilation (SDA coefficient) was equivalent between the different feeding rations but higher for fish exposed to hypoxia. Comparing peak oxygen consumption during the SDA course with maximum metabolic rates showed that food rations of 2.5% and 5% BM reduced the scope for activity by 40% and 55%, while ingestion of 5% BM in hypoxia occupied 69% of the aerobic scope, leaving little energy for other activities. 相似文献
15.
The effect of locomotor activity on respiration rate was studiedin the food-deprived copepod Calanus euxinus tethered to a forcesensor. The power generated by mouth appendages during cruisinglocomotion, with a frequency of 40 Hz, accounted for 0.026 and0.0031 W for metabolic and mechanical processes, respectively.To overcome total hydrodynamic drag during foraging with a meanswimming speed of 3.2 cm s1, the copepods need 0.4 x103 W, equating to 1.3% of total metabolism. The lossesof mechanical energy for body propulsion amounted to 1.3 x 103W, whilst the cost of feeding current generation run up to 1.8x 103 W, or 58% of the total. Changing of locomotor activityand respiration rate during feeding was examined separatelyin tethered and free-swimming copepods. At algal concentrationof 300 µg C L1, the magnitude of specific dynamicaction (SDA) averaged 1.2 ± 0.44 nL O2 µg C1h1 in copepodites V and females, with similar movingactivity before and during feeding. The contribution of SDAinto total metabolism varied from 23 to 85% in C. euxinus withlow activity level and constituted only 10% in active animals.In starved copepods, with low locomotor activity, feeding eventsstimulated the increase in frequency and total duration of locomotionwhich resulted in elevated energy expenditure enhancing theapparent SDA. 相似文献
16.
The past decade has witnessed a dramatic increase in studies of amphibian and reptile specific dynamic action (SDA). These studies have demonstrated that SDA, the summed energy expended on meal digestion and assimilation, is affected significantly by meal size, meal type, and body size and to some extent by body temperature. While much of this attention has been directed at anuran and reptile SDA, we investigated the effects of meal size, meal type, and body temperature on the postprandial metabolic responses and the SDA of the tiger salamander (Ambystoma tigrinum tigrinum). We also compared the SDA responses among six species of Ambystoma salamanders representing the breadth of Ambystoma phylogeny. Postprandial peaks in VO(2) and VO(2), duration of elevated metabolism, and SDA of tiger salamanders increased with the size of cricket meals (2.5%-12.5% of body mass). For A. tigrinum, as for other ectotherms, a doubling of meal size results in an approximate doubling of SDA, a function of equal increases in peak VO(2) and duration. For nine meal types of equivalent size (5% of body mass), the digestion of hard-bodied prey (crickets, superworms, mealworms, beetles) generated larger SDA responses than the digestion of soft-bodied prey (redworms, beetle larvae). Body temperature affected the profile of postprandial metabolism, increasing the peak and shortening the duration of the profile as body temperature increased. SDA was equivalent among three body temperatures (20 degrees, 25 degrees, and 30 degrees C) but decreased significantly at 15 degrees C. Comparatively, the postprandial metabolic responses and SDA of Ambystoma jeffersonianum, Ambystoma maculatum, Ambystoma opacum, Ambystoma talpoideum, Ambystoma texanum, and the conspecific Ambystoma tigrinum mavortium digesting cricket meals that were 5% of their body mass were similar (independent of body mass) to those of A. t. tigrinum. Among the six species, standard metabolic rate, peak postprandial VO(2), and SDA scaled with body mass with mass exponents of 0.72, 0.78, and 1.05, respectively. 相似文献
17.
18.
The effects of temperature acclimation and acute temperature change were investigated in postprandial green shore crabs, Carcinus maenas. Oxygen uptake, gut contractions and transit rates and digestive efficiencies were measured for crabs acclimated to either 10 °C or 20 °C and subsequently exposed to treatment temperatures of 5, 15, or 25 °C. Temperature acclimation resulted in a partial metabolic compensation in unfed crabs, with higher oxygen uptake rates measured for the 10 °C acclimated group exposed to acute test temperatures. The Q10 values were higher than normal, probably because the acute temperature change prevented crabs from fully adjusting to the new temperature. Both the acclimation and treatment temperature altered the characteristics of the specific dynamic action (SDA). The duration of the response was longer for 20 °C acclimated crabs and was inversely related to the treatment temperature. The scope (peak oxygen consumption) was also higher for 20 °C acclimated crabs with a trend towards an inverse relationship with treatment temperature. Since the overall SDA (energy expenditure) is a function of both duration and scope, it was also higher for 20 °C acclimated crabs, with the highest value measured at the treatment temperature of 15 °C. The decline in total SDA after acute exposure to 5 and 25 °C suggests that both cold stress and limitations to oxygen supply at the temperature extremes could be affecting the SDA response. The contractions of the pyloric sac of the foregut region function to propel digesta through the gut, and contraction rates increased with increasing treatment temperature. This translated into faster transit rates with increasing treatment temperatures. Although pyloric sac contractions were higher for 20 °C acclimated crabs, temperature acclimation had no effect on transit rates. This suggests that a threshold level in pyloric sac contraction rates needs to be reached before it manifests itself on transit rates. Although there was a correlation between faster transit times and the shorter duration of the SDA response with increasing treatment temperature, transit rates do not make a good proxy for calculating the SDA characteristics. The digestive efficiency showed a trend towards a decreasing efficiency with increasing treatment temperature; the slower transit rates at the lower treatment temperatures allowing for more efficient nutrient absorption. Even though metabolic rates of 10 °C acclimated crabs were higher, there was no effect of acclimation temperature on digestive efficiency. This probably occurred because intracellular enzymes and digestive enzymes are modulated through different control pathways. These results give an insight into the metabolic and digestive physiology of Carcinus maenas as it makes feeding excursions between the subtidal and intertidal zones. 相似文献
19.
20.
Protein synthesis requirements at specific points in the interphase of meristematic cells 总被引:1,自引:0,他引:1
A González-Fernández G Giménez-Martín M E Fernández-Gómez C de la Torre 《Experimental cell research》1974,88(1):163-170
A 6 h treatment with anisomycin at a concentration of 1 μg/ml enables us to modify the steady-state kinetics of a meristematic cell population of Allium cepa, and this points to a difference of sensitivity to inhibition of protein synthesis between the several periods of the cell division cycle (G1, S, G2, M). The results show that the cells are incapable of entering the S period in the presence of the inhibitor, but that, where DNA synthesis has already been initiated, the synthesis continues in the cells in question. It was found, moreover, that there is a point in the early G2 period, which has a duration of approx. 3 % of the total duration of the cycle, at which the synthesis of specific proteins appears to determine the progression of cells to mitosis. 相似文献