首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.  相似文献   

4.
repABC plasmids are widely distributed among alpha-proteobacteria. They are especially common in Rhizobiales. Some strains of this bacterial order can contain multiple repABC replicons indicating that this plasmid family includes several incompatibility groups. The replication and stable maintenance of these replicons depend on the presence of a repABC operon. The repABC operons sequenced to date share some general characteristics. All of them contain at least three protein-encoding genes: repA, repB and repC. The first two genes encode proteins involved in plasmid segregation, whereas repC encodes a protein crucial for replication. The origin of replication maps within the repC gene. In contrast, the centromere-like sequence (parS) can be located at various positions in the operon. In this review we will summarize current knowledge about this plasmid family, with special emphasis on their structural diversity and their complex genetic regulation. Finally, we will examine some ideas about their evolutionary origin and trends.  相似文献   

5.
6.
7.
8.
9.
The repABC operon is the prevalent replication unit of alphaproteobacterial plasmids. Their semi-autonomy is ensured by the essential replicase gene repC as well as the repAB partitioning cassette. While conserved repAB modules are widespread among bacterial plasmids and homologues are even responsible for chromosome partitioning, repC genes are exclusively present in Alphaproteobacteria . RepABC operons contain two strong incompatibility regions, namely a small regulative antisense RNA gene ( incα ) and a palindromic centromere region ( incβ ), which were previously used to classify these replicons. The present survey pursued a complementary strategy essentially following the rationale that all plasmids identified from a single bacterium are per se compatible. We established a novel classification scheme for plasmids based on comprehensive phylogenetic analyses of repC , repA and repB genes. Our case study is focused on the Roseobacter clade ( Rhodobacterales ), one of the most successful lineages of the marine bacterioplankton. Its global significance was shown in several studies and the interest in these organisms is reflected by more than 40 upcoming genome projects. Based on phylogenetic RepC analyses we identified nine compatibility groups that are expected to stably coexist within the same cell. This prediction is supported by RepA and RepB phylogenies, moreover independent evidence is delivered by the group specificity of highly conserved palindromes ( incβ ).  相似文献   

10.
11.
pSCL2 (120 kb), one of the linear plasmids found in Streptomyces clavuligerus NRRL3585, was isolated and partially sequenced. Computational analysis of the central region of pSCL2 revealed the presence of two open reading frames that appear to encode proteins highly homologous to RepL1 and RepL2, replication proteins from pSLA2-L, the large linear plasmid in Streptomyces rochei. The S. clavuligerus open reading frames were designated repC1 and repC2, encoding the proteins RepC1 (150 amino acids) and RepC2 (102 amino acids), respectively. The RepC and RepL proteins have identical translation features and very similar predicted secondary and tertiary structures. Functional analysis confirmed that RepC1 is essential for replication initiation of pSCL2, whereas RepC2 is dispensable but may play a role in copy number control. The RepC and RepL proteins do not show similarity to any other bacterial plasmid replication proteins. Three regions of DNA sequence, Box 1 (1050-850 bp), Box 2 (723-606 bp), and Box 3 (224-168 bp), located upstream of repC1, were also shown to be essential or very important for replication of pSCL2.  相似文献   

12.
pT181 is a fully sequenced 4.4-kb 20 copy Tcr plasmid from Staphylococcus aureus. Its replication system involves a unique unidirectional origin embedded in the coding sequence for a plasmid-determined protein, RepC, that is required for initiation. When joined to a 55 copy carrier plasmid, pE194, pT181 excludes autonomous isologous replicons by inhibiting their replication. Two types of spontaneous pT181 copy mutants have been isolated, one that eliminates sensitivity to this inhibition and another that does not. A spontaneous 180-bp deletion, delta 144, eliminates both the inhibitory activity and sensitivity to it. This deletion increases copy number by 50-fold and RepC production by at least 10-fold. It is located directly upstream from the repC coding sequence and the deletion-bearing plasmid supports the replication of inhibitor-sensitive plasmids in cells containing active inhibitor. This effect is probably due to the overproduction of RepC by the delta 144 plasmid. On the basis of these results, it is suggested that RepC synthesis is negatively controlled by an inhibitor that is encoded directly upstream from the repC coding sequence and acts as a tareget set in the same region. It is likely, therefore, that pT181 replication rate is determined by the level of RepC.  相似文献   

13.
Palmer KM  Turner SL  Young JP 《Plasmid》2000,44(3):209-219
The repABC operon is essential for stable maintenance of some Rhizobiaceae plasmids and of pTAV320 from Paracoccus versutus. These plasmids are the largest described family of homologous, yet compatible replicons. The repC gene is essential for plasmid replication, and previous work identified four distinct sequence groups (repC1, repC2, repC3, and repC4) that appear to define different compatibility classes. Probes for these different groups were used to characterize plasmids in Rhizobium leguminosarum population studies and three new repC sequence groups, repC5, repC6, and repC7 were identified. The general repC primers were modified to amplify a wider range of repC sequences and repC sequences were identified in Sinorhizobium and Mesorhizobium type strains. We also showed that the repC3 group-specific primers described previously do not amplify all repC3 sequences and developed a new repC3 amplification strategy.  相似文献   

14.
Control of pT181 replication II. Mutational analysis.   总被引:25,自引:3,他引:22       下载免费PDF全文
  相似文献   

15.
The replicator region of composite plasmid pTAV1 of Paracoccus versutus (included in mini-replicon pTAV320) belongs to the family of repABC replicons commonly found in plasmids harbored by Agrobacterium and Rhizobium spp. The repABC replicons encode three genes clustered in an operon, which are involved in partitioning (repA and repB) and replication (repC). In order to localize the partitioning site of pTAV320, the two identified incompatibility determinants of this mini-replicon (inc1, located in the intergenic sequence between repB and repC; and inc2, situated downstream of the repC gene) were PCR amplified and used together with purified RepB fusion protein (homologous to the type B partitioning proteins binding to the partitioning sites) in an electrophoretic mobility shift assay. The protein bound only inc2, forming two complexes in a protein concentration-dependent manner. The inc2 region contains two long (14-bp) repeated sequences (R1 and R2). Disruption of these sequences completely eliminates RepB binding ability. R1 and R2 have sequence similarities with analogous repeats of another repABC replicon of plasmid pPAN1 of Paracoccus pantotrophus DSM 82.5 and with centromeric sequences of the Bacillus subtilis chromosome. Excess RepB protein resulted in destabilization of the inc2-containing plasmid in Escherichia coli. On the other hand, the inc2 region could stabilize another unstable replicon in P. versutus when RepA and RepB were delivered in trans, proving that this region has centromere-like activity. Thus, it was demonstrated that repA, repB, and inc2 constitute a functional system for active partitioning of pTAV320.  相似文献   

16.
J Bargonetti  P Z Wang    R P Novick 《The EMBO journal》1993,12(9):3659-3667
We have prepared and analyzed two types of gene fusion between the replication initiator gene, repC, and the reporter gene, blaZ, in order to investigate the relationship between pT181 plasmid copy number and RepC initiator protein production. A series of pT181 copy mutant plasmids, with copy numbers ranging from 70 to 800 copies per cell, were analyzed. In one type of gene fusion used in this study, blaZ was translationally coupled to the C-terminal end of the repC coding sequence such that native forms of both proteins were produced. This gene fusion arrangement, which permitted monitoring of RepC production (as BlaZ activity) by plasmids using the protein for their own replication, demonstrated a linear relationship, with one exception, between RepC production and plasmid copy number over a 20-fold range. In the second type of fusion, blaZ was translationally fused to the C-terminal end of repC. As the translational fusion did not produce active RepC protein, the fusion-containing pT181 derivatives were maintained in a strain which provided RepC in trans, and were thus analyzed at constant copy number. In contrast to previous analyses of this type, our translational fusion constructs expressed repC at levels proportional to the copy numbers of the plasmids from which the fusions were prepared. Using these data, we have calculated a minimum figure for the number of RepC molecules synthesized per replication event.  相似文献   

17.
The repABC replicons have an unusual structure, since they carry genes coding for partitioning (repA, repB) and replication (repC) proteins, which are organized in an operon. So far, the presence of these compact bi-functional modules has been reported only in the megaplasmids of the Rhizobiaceae and within the plasmid pTAV1 (107kb) of Paracoccus versutus. We studied the distribution of repABC-type replicons within bacteria belonging to the genus Paracoccus. We found that repABC replicons occur only in the group of pTAV1-like plasmids: pKLW1, pHG16-a, pWKS2, and pPAN1, harbored by different strains of Paracoccus pantotrophus. A partial sequencing approach followed by phylogenetic analysis revealed that these replicons constitute a distinct evolutionary branch of repABC replicons. Incompatibility studies showed that they represent two incompatibility groups designated IncABC1 (pTAV1, pKLW1, and pHG16-a) and IncABC2 (pPAN1). Sequence comparison using available databases allowed the identification, within plasmid pRS241d of Rhodobacter sphaeroides 2.4.1, of an additional sequence highly homologous to the paracoccal repABC replicons, which has been included in comparative analyses.  相似文献   

18.
Large extrachromosomal replicons in many members of the alpha-proteobacteria encode genes that are required for plant or animal pathogenesis or symbiosis. Most of these replicons encode repABC genes that control their replication and faithful segregation during cell division. In addition to its chromosome, the plant endosymbiont Sinorhizobium meliloti also maintains the 1.4 Mb pSymA and 1.7 Mb pSymB symbiotic megaplasmids both of which are repABC-type replicons. In all repABC loci that have been characterized, an apparently untranslated intergenic region between the repB and repC genes encodes a strong incompatibility determinant (referred to as incalpha). Here we report the isolation of mutations within the incalpha regions of pSymA and pSymB that eliminate incompatibility. These mutations map to and inactivate a promoter in the intergenic region that drives the expression of an approximately 56 nucleotide untranslated RNA molecule that mediates incompatibility. This gene, that we have named incA, is transcribed antisense to the repABC genes. Our analysis suggests that the incA gene is conserved in repABC loci from a diverse spectrum of bacteria.  相似文献   

19.
A small cryptic plasmid designated pPB1 was isolated from Lactobacillus plantarum BIFI-38 and its complete 2899 bp nucleotide sequence was determined. Sequence analysis revealed four putative open reading frames. Based on sequence analysis two modules could be identified. First, the replication module consisted of a sequence coding for a replication protein (RepB) and its corresponding target site, and two putative repressor proteins (RepA and RepC). Sequence analysis indicated the possible synthesis of an antisense RNA that might regulate RepB production. A putative lagging-strand initiation site was also found, suggesting that pPB1 replicates via a rolling circle mechanism. The second module of pPB1 consisted of a sequence coding for a putative mobilization protein and its corresponding oriT site. Since the nucleotide sequence of the replication module showed 94.5% identity to the similar region on the Leuconostoc lactis plasmid pCI411, and the nucleotide sequence of the mobilization module had 97.5% identity to L. plantarum plasmid pLB4, it is concluded that pPB1 originated by modular exchange between two such plasmids by homologous recombination. Putative recombination sites where crossover might have taken place were also identified.  相似文献   

20.
RepC is rate limiting for pT181 plasmid replication   总被引:13,自引:0,他引:13  
The effect on pT181 plasmid replication of the concentration of the plasmid-coded initiator protein, RepC, has been analyzed. In one type of experiment, plasmid replication was found to stop immediately after the addition of an inhibitory concentration of chloramphenicol (Cm) to growing cultures. Chromosomal replication showed the slow turnoff that is usual for Cm inhibition. Because plasmid replication rate is determined autogenously, no host factor can be rate limiting, suggesting that the specific factor affected is Rep C. In another type of experiment, we constructed a translational fusion between the repC coding sequence and a translationally inducible Cm-acetylase gene, cat-86, using pUB110 as the carrier replicon. The fusion plasmid showed an eightfold amplification of its own copy number and a similar amplification of a co-resident pT181 plasmid upon Cm induction. The amplified plasmids did not show autocatalytic runaway replication but rather established stable elevated copy numbers, indicating the existence of a secondary level of regulation. These results suggest that RepC is rate limiting for pT181 replication and support the hypothesis that pT181 replication is regulated at the level of RepC synthesis. The nature of the secondary regulation is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号