首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition by opiates of the PGE2-induced formation of cAMP in slices from rat brain striatum was investigated. A maximal, 3.5-fold increase over the basal level of cAMP was obtained with an EC50 for PGE2 of 3 microM. Opiate agonists of both mu and kappa type were inhibitory. The IC50 values for morphine, levorphanol and ethylketocyclazocine (EKC) were 110 nM, 80 nM and 25 nM, respectively. These values were similar to the potencies of the compounds in displacing stereospecifically bound 3H-etorphine in rat brain membranes. As evidenced by the inactivity of dextrorphan, the inhibition of PGE2-dependent cAMP formation was stereospecific. Also ineffective were the opiate antagonists naloxone, naltrexone and MR 2266. These compounds did, however, reverse the inhibition by agonists, displaying thereby selectivity toward the putative mu and kappa opiates. Thus, the inhibition by morphine was antagonized to a greater degree by naloxone than by MR 2266, and the action of EKC was blocked more effectively by MR 2266 relative to naloxone.  相似文献   

2.
Mu and kappa opiate binding sites in the rabbit CNS   总被引:2,自引:0,他引:2  
J C Meunier 《Life sciences》1982,31(12-13):1327-1330
We have examined the ability of various opiates to compete with the binding of 3H-etorphine (0.5 nM) in membranes from the rabbit cerebellum and thalamus. Our data suggest that greater than 80% of 3H-etorphine binding occurs at mu receptor sites in cerebellum membranes. In thalamus membranes, D-Ala2, D-Leu5-enkephalin (DADL) resolves binding of 3H-etorphine into two components. The first component accounts for about 50% of binding and may represent interaction of the radioligand with mu receptor sites. The second component is unaffected in the presence of high (1-5 microM) concentrations of DADL. The ranking of potency for opiate inhibition of the second component is ethylketocyclazocine greater than naloxone much greater than morphine much greater than DADL, suggesting it represents binding of 3H-etorphine to a kappa-opiate binding site. In the rabbit brain, the kappa-opiate binding site is particularly abundant in the thalamus followed by frontal cortex and caudate nucleus.  相似文献   

3.
Solubilization of membrane bound opiate receptor from rat brain   总被引:1,自引:0,他引:1  
T M Cho  C Yamato  J S Cho  H H Loh 《Life sciences》1981,28(23):2651-2657
Sonication of rat brain membranes for 9 minutes solubilized 35% of their stereospecific opiate binding activity; a second 9 minute sonication of the insoluble residue released an additional 21% of the original binding. The opiate binding properties of the solubilized material were highly similar to those of membrane bound receptor by a number of criteria, including affinity, effect of sodium, and the IC50 of unlabeled opiates in displacing 3H-etorphine binding. Moreover, storage of the solubilized receptor fraction for two weeks at ?20°C did not significantly change the receptor binding. Sonication thus appears to be a useful first step in purifying the opiate receptor.  相似文献   

4.
Evidence for coupling of the kappa opioid receptor to brain GTPase   总被引:2,自引:0,他引:2  
In membranes from guinea pig cerebellum, a tissue which predominantly contains kappa opioid receptors, exogenous and endogenous kappa-selective opioid agonists stimulated low-km GTPase activity by 11-20% with concentrations for half-maximal stimulation of 3-23 microM. Opioid ligands of the mu and delta type had no effect on GTPase in these membranes. Similar stimulation of GTPase by kappa opiates was obtained in rat and monkey brain membranes pretreated with beta-funaltrexamine (beta-FNA) and cis-(+/-)-3-methylfentanyl isothiocyanate (superfit) to alkylate the mu and delta receptors, respectively. The stimulation of brain GTPase by kappa opiates in both types of membranes was inhibited by naloxone with IC50's of 0.35 microM and 0.40 microM. The results demonstrate the coupling of the kappa opioid receptor to high affinity GTPase, the Ni regulatory protein of the adenylate cyclase complex.  相似文献   

5.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

6.
Y Sarne  A Kenner 《Life sciences》1987,41(5):555-562
Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existence of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with [3H]D-Ala, D-Leu enkephalin and with [3H]morphine varies with experimental conditions (storage of membranes at 4 degrees C for 72 h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results can not be explained by a common high affinity site, but rather by binding of [3H]D-Ala, D-Leu enkephalin to mu and of [3H]morphine to delta opioid receptors.  相似文献   

7.
125I-beta-Endorphin (human) binds with high affinity, specificity, and saturability to rat brain and neuroblastoma X glioma hybrid cell (NG 108-15) membranes. Dissociation constants and binding capacities were obtained from Scatchard plots and are 2 nM and 0.62 pmol/mg of protein for rat whole brain and 6 nM and 0.8 pmol/mg of protein for NG 108-15 cells. Results from competition experiments also indicate that this ligand interacts with high affinity with both mu and delta opioid binding sites, with a slight preference for mu sites, while exhibiting low affinity at kappa sites. We have demonstrated that human 125I-beta-endorphin is a useful probe for the investigation of the subunit structure of opioid receptors. The specific cross-linking of this ligand has revealed the presence of four reproducible bands or areas after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography at 65, 53, 38, and 25 kDa. All labeled bands seem to be opioid receptor related since they are eliminated when binding is carried out in an excess of various opiates. The evidence we have obtained using rat whole brain (delta congruent to mu), rat thalamus (largely mu), bovine frontal cortex (delta:mu congruent to 2:1), and NG 108-15 cells (delta) demonstrates that different labeling patterns are obtained when mu and delta binding sites are cross-linked. The pattern obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from cross-linked mu sites contains a major (heavily labeled) component of 65 kDa and a minor component of 38 kDa, while patterns from delta sites contain a major labeled component of 53 kDa. This 53-kDa band appears clearly in extracts from NG 108-15 cells and bovine frontal cortex, while in rat whole brain a diffusely labeled region is present between 55 and 41 kDa. In addition, NG 108-15 cells also display a minor labeled component at 25 kDa. The relationship of the minor bands to the major bands is not clear.  相似文献   

8.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

9.
The synthesis and characterization of a novel opioid receptor photoaffinity probe [3H]naltrexyl urea phenylazido derivative ([3H]NUPA) is described. In the absence of light, [3H]NUPA binds with high affinity in a reversible and saturable manner to rat brain and guinea pig cerebellum membranes. Dissociation constants and binding capacities (Scatchard plots) are 0.11 nM and 250 fmol/mg of protein for rat brain and 0.24 nM and 135 fmol/mg of protein for guinea pig cerebellum. Competition experiments indicate that this ligand interacts with high affinity at both mu- and kappa-opioid binding sites while exhibiting low affinity at delta sites (Ki = 21 nM). On irradiation, [3H]NUPA incorporates irreversibly into rat brain and guinea pig cerebellum membranes. SDS gel electrophoresis of rat brain membranes reveals specific photolabeling of a 67-kDa molecular mass band. Conversely, a major component of 58 kDa and a minor component of 36 kDa are obtained from [3H]NUPA-labeled guinea pig cerebellum membranes. Different photolabeling patterns are obtained in rat brain (mu/delta/kappa, 4/5/1) and guinea pig cerebellum (mu+delta/kappa, 1,5/8,5) membranes in the presence of selective opioid ligands indicating labeling of mu and kappa sites, respectively. Thus, [3H]NUPA behaves as an efficient photoaffinity probe of mu- and kappa-opioid receptors, which are probably represented by distinct glycoproteins of 67 and 58 kDa, respectively.  相似文献   

10.
Kappa opioid binding sites from human placenta, prelabeled with 3H-etorphine and solubilized, were retained on wheat germ agglutinin (WGA) agarose and specifically eluted with N-acetylglucosamine. No significant retention was found with other immobilized lectins, including Concanavalin A (Con A), soybean seed lectin (SBA), Pisum sativum lectin (PsA), Lens culinaris Medik. lectin (LcA), and Lathyrus tingitanus lectin(LtA). About 23% of applied kappa sites were specifically eluted from WGA agarose, less than half of the proportion of rat brain opioid binding sites eluted from the same lectin (55%). Receptors from placental extracts were compared with those from other tissues enriched in either kappa or mu sites. The proportion of applied kappa sites from guinea pig cerebellum eluted specifically from WGA agarose was 36%, whereas elution of binding sites from rat thalamus and rabbit cerebellum (enriched in mu sites) was at a level of 55%. This difference in the level of retention on and elution from WGA may reflect differences in the sugar composition of the glycoproteins of the two types of receptors. Succinylation of WGA abolished its ability to retain opioid binding sites, consistent with involvement of sialic acid. However, currently available evidence suggests that differences in retention on WGA between kappa and mu sites may be due to differences in either sialic acid or N-acetylglucosamine content or both.  相似文献   

11.
Previous experiments resolved four kappa binding sites in guinea pig brain termed kappa 1a, kappa 1b, and kappa 2b. The present study was undertaken to examine the occurrence of kappa receptor subtypes in rat and human brain. [3H]U69,593 and [3H]bremazocine were used to label kappa 1 and kappa 2 binding sites, respectively, present in brain membranes depleted of mu and delta binding sites by pretreatment with the irreversible ligands, BIT and FIT. Low levels of [3H]U69,593 binding precluded a detailed quantitative study of kappa 1 binding sites in these species. Quantitative examination of [3H]bremazocine binding resolved two kappa 2 binding sites in both rat and human brain whose ligand selectivity patterns differed from that of the guinea pig. These observations suggest that there may be considerable variation in the ligand recognition site of kappa receptor subtypes among mammalian species.  相似文献   

12.
Our observations that opioid peptides have direct effects on islet insulin secretion and liver glucose production prompted a search for endogenous opiates and their receptors in these peripheral tissues. Mu-, delta- and kappa-receptor-active opiates were demonstrated in brain, pancreas and liver extracts by displacement studies using selective ligands for the three opiate receptor subtypes [( 3H][D-Ala2,MePhe4,Gly5-ol]enkephalin, [3H][D-Ala2,D-Leu5]enkephalin and [3H]dynorphin respectively). Receptor-active opiates in brain extracts exhibited a stronger preference for delta-opiate-receptor sites than for mu and kappa sites. Pancreatic extract opiates demonstrated a similar activity at mu and delta sites, but substantially less at kappa sites. Liver extracts displayed similar selectivity for all three sites. The affinities of the receptor-active opiates for mu-, delta- and kappa-receptor subtypes displayed a rank order of potency: brain much greater than pancreas greater than liver. Total immunoreactive beta-endorphin and [Met5]enkephalin levels in liver and hepatocytes were greater than those in brain. Immunoreactive [Met5]enkephalin levels in pancreas were similar to, but beta-endorphin levels were substantially higher than, those in brain. Delta and kappa opiate-binding sites of high affinity were identified in crude membrane preparations of islets of Langerhans, but no specific opiate-binding sites could be demonstrated in liver membrane preparations. Immunoreactive dynorphin and beta-endorphin were demonstrated by immunogold labelling in rat pancreatic islet cells. No positive staining of liver sections for opioids was observed. These results suggest that the tissue content of opiate-receptor-active compounds in the pancreas and the liver is very significant and could contribute to the regulation of normal blood glucose levels.  相似文献   

13.
1. Specific binding of [3H]ethylketocyclazocine (EkappaC), a prototype kappa-opiate agonist, to slide-mounted rat striatal sections is increased in the presence of 100 mM NaCl at 4 degrees C. 2. Under similar incubation conditions, binding of mu and delta prototype opiates is reduced to almost undetectable levels. 3. Correlation (P less than 0.01) of the ligand selectivity pattern of [3H]EKC displacement with the potencies of various opiate drugs in inhibiting the contractions of the rabbit vas deferens, a kappa-opiate receptor bioassay, suggests that the binding site under study represents the pharmacologically relevant kappa-opiate receptor. 4. Visualization of these kappa-opiate receptors with tritium-sensitive film reveals a striking, highly discrete brain distribution pattern (e.g., striatal patches, habenular stripe) which is similar to that of [3H]dihydromorphine and [3H]naloxone. 5. Soluble [3H]EKC binding sites obtained from rat membranes also possess a kappa-like ligand selectivity pattern, with bremazocine being a potent displacer while mu and delta ligands are almost inactive. 6. A possible explanation of these data is that the "kappa"-opiate binding site in rat brain is one transitional state of an opiate receptor capable of assuming distinct conformations with characteristic ligand selectivity patterns. Other possibilities such as pre and post-synaptic locations should also be considered.  相似文献   

14.
W E Myers  J A Glasel 《Life sciences》1986,38(19):1783-1788
Receptor subclass recognition properties of affinity-purified rabbit polyclonal anti-idiotypic anti-opiate receptor antibodies in various membrane preparations have been determined. The anti-receptor immunoglobulins significantly decrease binding of 3H-[D-Ala2,-MePhe4,Gly-ol5]enkephalin, a highly selective mu agonist, in rat neural membrane. In the presence of a concentration of the unlabeled ligand sufficient to block existing mu sites, the antibodies compete, to a lesser degree with 3H-[D-Ala2,D-Leu5]enkephalin for delta site occupancy in both rat neural membrane, and neuroblastoma x glioma membrane preparations. The antibodies do not displace 3H-ethylketocyclazocine from rat brain or guinea pig cerebellum.  相似文献   

15.
R R Goodman  S H Snyder 《Life sciences》1982,31(12-13):1291-1294
The pharmacologically defined kappa drug 3H-ethylketazocine (3H-EKC) and 3H-bremazocine bind to unique sites, but also to mu and delta receptors. By displacing mu and delta interactions with morphine and D-Ala2, D-Leu5-enkephalin (DADL) respectively we have visualized selective receptors for 3H-EKC and 3H-bremazocine. These two kappa ligands are localized to sites different from mu and delta receptors labeled with 3H-dihydromorphine (3H-DHM) and 3H-DADL. The highest density and most selective localization of putative kappa receptors occurs in layers V and VI of the cerebral cortex. Cells in these layers project to the thalamus, regulating sensory input to the cortex. These deep cortical kappa receptors may account for the unique sedative and analgesic actions of kappa opiates.  相似文献   

16.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

17.
Beta-endorphin (beta-EP) and peptide E were compared in respect to their binding potency in the rat brain membrane by radioreceptor binding assay using tritiated human beta-EP, [D-Ala2,D-Leu5]-enkephalin (DADLE), dihydromorphine (DHM) and ethylketocyclazocine (EKC) as primary ligands. When the potency of beta h-EP was chosen to be 100%, peptide E was equipotent with beta-EP in displacing DHM (95%) and EKC (103%) less potent for competing with beta h-EP (60%) and least active (7%) for displacing DADLE. It may be concluded that peptide E binds preferentially with the opiate mu and kappa receptors in the rat brain membrane.  相似文献   

18.
Dermorphin, Tyr-DAla-Phe-Gly-Tyr-Pro-Ser-NH2, a potent opioid peptide isolated from amphibian skin, is endowed with outstanding structural and biological features. It has no common structure with mammalian opioid peptides and is a unique example of a peptide, synthesized by an animal cell, which contains a D-amino acid in its native sequence. We have undertaken a complete evaluation of the receptor selectivity of dermorphin, together with the binding characteristics and receptor distribution of [3H]dermorphin in the rat brain. 1. Dermorphin was tested for its relative affinity to mu-, delta- and chi-opioid receptors by determining its potency in displacing the selective mu-receptor ligand [3H]Tyr-DAla-Gly-MePhe-Gly-ol (where Gly-ol = glycinol), the prototypic delta-receptor ligand [3H]Tyr-DPen-Gly-Phe-DPen (where DPen = beta, beta-dimethylcysteine) and the chi ligand [3H]ethylketocyclazocine from rat brain and/or guinea pig cerebellum membrane preparations. Inhibitory constant (Ki) values of dermorphin were 0.7 nM, 62 nM and greater than 5000 nM respectively for mu, delta and chi sites, indicating a selectivity ratio Ki(delta)/Ki(mu) = 88. Under similar conditions, Tyr-DAla-Gly-MePhe-Gly-ol, which is regarded as one of the most selective high-affinity mu-agonist available, exhibited a selectivity ratio of 84. 2. Specific binding properties of tritium-labeled dermorphin (52 Ci/mmol) were characterized in the rat brain. Equilibrium measurements performed over a large range of concentrations revealed a single homogeneous population of high-affinity binding sites (Kd = 0.46 nM; Bmax = 92 fmol/mg membrane protein). 3. Profound differences were observed in the potencies displayed by various selective opiates and opioids ligands in inhibiting the specific binding of [3H]dermorphin. The rank order of potency was in good agreement with that obtained with other mu-selective radiolabeled ligands. 4. Receptor autoradiography in vitro was used to visualize the distribution of [3H]dermorphin binding sites in rat brain. The labeling pattern paralleled that observed using other mu probes. Binding parameters and selectivity profile of [3H]dermorphin on slide-mounted sections were similar to those obtained with membrane homogenates. 5. Finally, intracerebroventricular administration of synthetic dermorphin into mice showed that this peptide is the most potent analgesic known to date, being up to 5 and 670 times more active than beta-endorphin and morphine, respectively. Higher doses induced catalepsy. The overall data collected demonstrate that dermorphin is the first among the naturally occurring peptides to be highly potent and nearly specific super-agonist towards the morphine (mu) receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
X J Wang  S G Fan  M F Ren  J S Han 《Life sciences》1989,45(2):117-123
Radio receptor assay (RRA) was adopted to analyse the influence of CCK-8 on 3H-etorphine binding to opiate receptors in rat brain synaptosomal membranes (P2). In the competition experiment CCK-8 (1pM to 1 microM) suppressed the binding of 3H-etorphine. This effect was completely reversed by proglumide at 1 microM. Rosenthal analysis for saturation revealed two populations of 3H-etorphine binding sites. CCK-8 (1pM to 1 microM) inhibited 3H-etorphine binding to the high affinity sites by an increase in Kd (up to +235%) and decrease in Bmax (up to -80%) without significant changes in the Kd and Bmax of the low affinity sites. This effect of CCK-8 (10nM) was also completely reversed by proglumide at 1 microM. Unsulfated CCK-8 (100pM to 1 microM) produced only a slight increase in Kd of the high affinity sites (+64%) without affecting Bmax. The results suggest that CCK-8 might be capable of suppressing the high affinity opioid binding sites via the activation of CCK receptor.  相似文献   

20.
A number of opiate antagonists and the dextro isomers of some of these drugs were studied for antagonism of acute opiate effects on ilea isolated from opiate-naive guinea pigs, precipitation of a withdrawal contraction of ilea isolated from morphine-dependent guinea pigs, precipitation of withdrawal in morphine-dependent rhesus monkeys and stereospecific displacement of 3H-etorphine binding to rat-brain membranes. With the exception of d-naloxone, all of the compounds displaced 3H-etorphine. With the exception of d-naloxone, nalorphine, and quaternary nalorphine, all of the antagonists caused a contraction of ilea isolated from morphine-dependent guinea pigs. Moreover, the IC 50 values of the compounds for displacing 3H-etorphine binding were well correlated with both their Ke values for antagonism in the ileum (r = 0.95) and with their EC 50 values for precipitating a contraction in this preparation (r = 0.92). Generally, the concentration of antagonist necessary to precipitate half maximal contracture was 30-fold greater than the Ke value of the antagonist. Most of the opiate antagonists also precipitated withdrawal when administered to morphine-dependent rhesus monkeys and their in vivo potencies were well correlated with their in vitro potencies in ileum (with Ke: r = 0.95; with EC 50: r = 0.99) and in displacing 3H-etorphine (r = 0.95). The quaternary derivative of naltrexone, however, was an effective opiate antagonist only in vitro, and was ineffective in precipitating withdrawal in morphine-dependent rhesus monkeys. These results suggest that the receptor sites labeled by 3H-etorphine are the same as those involved in antagonism of acute opiate actions and in precipitation of withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号