首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controlled assembly of collagen monomers into fibrils, with accompanying intermolecular cross-linking by lysyl oxidase-mediated bonds, is vital to the structural and mechanical integrity of connective tissues. This process is influenced by collagen-associated proteins, including small leucine-rich proteins (SLRPs), but the regulatory mechanisms are not well understood. Deficiency in fibromodulin, an SLRP, causes abnormal collagen fibril ultrastructure and decreased mechanical strength in mouse tendons. In this study, fibromodulin deficiency rendered tendon collagen more resistant to nonproteolytic extraction. The collagen had an increased and altered cross-linking pattern at an early stage of fibril formation. Collagen extracts contained a higher proportion of stably cross-linked α1(I) chains as a result of their C-telopeptide lysines being more completely oxidized to aldehydes. The findings suggest that fibromodulin selectively affects the extent and pattern of lysyl oxidase-mediated collagen cross-linking by sterically hindering access of the enzyme to telopeptides, presumably through binding to the collagen. Such activity implies a broader role for SLRP family members in regulating collagen cross-linking placement and quantity.  相似文献   

2.
The deposition of insoluble functional collagen occurs following extracellular proteolytic processing of procollagens by procollagen N- and C-proteinases, fibril formation, and lysyl oxidase dependent cross-linking. Procollagen C-proteinases in addition process and activate lysyl oxidase. The present study evaluates a possible role for procollagen C-proteinases in controlling different aspects of collagen deposition in vitro. Studies determine whether inhibition of procollagen C-proteinase activity with a specific BMP-1 inhibitor results in perturbations in lysyl oxidase activation, and in collagen processing, deposition, and cross-linking in phenotypically normal cultured murine MC3T3-E1 cells. Data show that BMP-1 Inhibitor dose dependently inhibits lysyl oxidase activation by up to 50% in undifferentiated proliferating cells. In differentiating cultures, BMP-1 inhibitor decreased collagen processing but did not inhibit the accumulation of mature collagen cross-links. Finally, electron microscopy studies show that collagen fibril diameter increased. Thus, inhibition of procollagen C-proteinases results in perturbed collagen deposition primarily via decreased collagen processing.  相似文献   

3.
Lysyl oxidase is a specific amine oxidase that catalyzes the formation of aldehyde cross-link intermediates in collagen and elastin. In this study, lysyl oxidase from embryonic chick cartilage was purified to constant specific activity and a single protein band on sodium dodecyl sulfate acrylamide gel electrophoresis. This band had an apparent molecular weight of 62,000. The eluted protein cross-reacted with inhibiting antisera developed against highly purified lysyl oxidase. The highly purified enzyme was active with both insoluble elastin and embryonic chick skin or bone collagen precipitated as reconstituted, native fibrils. There was low activity with nonhydroxylated collagen, collagen monomers, or native fibrils isolated from lathyritic calvaria. The maximum number of aldehyde intermediates formed per molecule of collagen that became insoluble was two. These results indicate that lysyl oxidase has maximum activity on ordered aggregates of collagen molecules that may be overlapping associations of only a few collagen molecules across. Formation of aldehyde intermediates and cross-links during fibril formation may facilitate the biosynthesis of stable collagen fibrils and contribute to increased fibril tensile strength in vivo.  相似文献   

4.
P Gavriel  H M Kagan 《Biochemistry》1988,27(8):2811-2815
The generation of covalent cross-linkages in collagen is initiated by the deamination by lysyl oxidase of specific lysine residues in this connective tissue protein. Since lysyl oxidase activity is influenced by ionic ligands bound to its protein substrates, the effect of heparin, an anionic glycosaminoglycan known to bind to collagen, was explored by using collagen and elastin substrates and highly purified lysyl oxidase. Concentrations of heparin up to 1 mg mL-1 had little effect on the enzymatic rate of oxidation if it was added prior to the addition of enzyme to a preformed fibrillar collagen substrate or to an insoluble elastin substrate. However, collagen oxidation was inhibited by 85% if this glycosaminoglycan was present at 0.4 mg mL-1 during collagen fibril formation before addition of the enzyme. Similarly, the rate and extent of collagen fibrillogenesis in the absence of lysyl oxidase were each markedly inhibited in the presence of 0.4 mg mL-1 heparin. Heparin also inhibited the extent of tight binding of lysyl oxidase to preformed fibrils by about 40% under conditions where enzyme activity against preformed fibrils was hardly affected. These results suggest that heparin may modulate the oxidation and thus the insolubilization of extracellular collagen fibers, possibly under conditions where elastin fiber synthesis is not affected, and that the tight binding of lysyl oxidase to collagen is not completely related to the expression of enzyme activity toward this substrate. These results also have mechanistic implications for the retarding effect of heparin on postoperative wound healing.  相似文献   

5.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network.  相似文献   

6.
Type IX collagen functions in covalent cross-linkage to type II collagen in cartilage (Eyre, D. R., Apone, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A. (1987) FEBS Lett. 220, 337-341). To understand this molecular relationship better, an analysis of all cross-linking sites labeled by [3H]borohydride was undertaken using the protein prepared from fetal bovine cartilage. Sequence analysis of tryptic peptides containing the 3H-labeled cross-links showed that each of the chains of type IX collagen, alpha 1(IX), alpha 2(IX), and alpha 3(IX), contained a site of cross-linking at the amino terminus of the COL2 triple-helix to which the alpha 1(II)N-telopeptide could bond. The alpha 3(IX)COL2 domain alone also had an attachment site for the alpha 1(II)C-telopeptide. The distance between the alpha 1(II)N-telopeptide and alpha 1(II)C-telopeptide interaction sites, 137 residues, is equal to the length of the hole zone (0.6D) in a type II collagen fibril. This implies an antiparallel type II to type IX cross-linking relationship. Peptide analysis also revealed an unknown amino acid sequence linked to the COL2 cross-linking domains in both the alpha 1(IX) and alpha 3(IX) chains. Using antibodies to this novel peptide, its origin in the collagen alpha 3(IX)NC1 domain was established. In summary, the results confirm extensive covalent cross-linking between type IX and type II collagen molecules and reveal the existence of type IX-type IX bonding. These data provide a molecular basis for the proposed function of type IX collagen as a critical contributor to the mechanical stability and resistance to swelling of the collagen type II fibril framework of cartilage.  相似文献   

7.
Lysyl oxidase activity is critical for the assembly and cross-linking of extracellular matrix proteins, such as collagen and elastin. Moreover, lysyl oxidase activity is sensitive to changes in copper status and genetic perturbations in copper transport, e.g., mutations in the P-type ATPase gene, ATP7A, associated with cellular copper transport. Lysyl oxidase may also serve as a vehicle for copper transport from extracellular matrix cells. Herein, we demonstrate that sufficient lysyl oxidase functional activity is present in the rat embryo at gestation day (GD) 9 to be detected in conventional enzyme assays. Estimation of embryonic lysyl oxidase functional activity, however, required partial purification in order to remove inhibitors. From GD 9 to GD 15, lysyl oxidase activity was relatively constant when expressed per unit of protein or DNA. In contrast, the steady-state levels of lysyl oxidase and ATP7A mRNA, measured by RT-PCR and expressed relative to total RNA and cyclophilin mRNA, increased approximately fourfold from GD 9 to 15. The pattern of temporal expression for ATP7A was consistent with its possible role in copper delivery to lysyl oxidase.  相似文献   

8.
Collagen IX containing the N-terminal noncollagenous domain 4 (NC4) is unique to cartilage and a member of the family of fibril-associated collagens with both collagenous and noncollagenous domains. Collagen IX is located at the surface of fibrils formed by collagen II and a minor proportion of collagen XI, playing roles in tissue stability and integrity. The NC4 domain projects out from the fibril surface and provides sites for interaction with other matrix components such as cartilage oligomeric matrix protein, matrilins, fibromodulin, and osteoadherin. Fragmentation of collagen IX and loss of the NC4 domain are early events in cartilage degradation in joint diseases that precedes major damage of collagen II fibrils. Our results demonstrate that NC4 can function as a novel inhibitor of the complement system able to bind C4, C3, and C9 and to directly inhibit C9 polymerization and assembly of the lytic membrane attack complex. NC4 also binds the complement inhibitors C4b-binding protein and factor H and enhances their cofactor activity in degradation of activated complement components C4b and C3b. NC4 interactions with fibromodulin and osteoadherin inhibited binding to C1q and complement activation by these proteins. Taken together, our results suggest that collagen IX and its interactions with matrix components are important parts of a machinery that protects the cartilage from complement activation and chronic inflammation seen in diseases like rheumatoid arthritis.  相似文献   

9.
The cell line, RCS-LTC (derived from the Swarm rat chondrosarcoma), deposits a copious extracellular matrix in which the collagen component is primarily a polymer of partially processed type II N-procollagen molecules. Transmission electron microscopy of the matrix shows no obvious fibrils, only a mass of thin unbanded filaments. We have used this cell system to show that the type II N-procollagen polymer nevertheless is stabilized by pyridinoline cross-links at molecular sites (mediated by N- and C-telopeptide domains) found in collagen II fibrils processed normally. Retention of the N-propeptide therefore does not appear to interfere with the interactions needed to form cross-links and mature them into trivalent pyridinoline residues. In addition, using antibodies that recognize specific cross-linking domains, it was shown that types IX and XI collagens, also abundantly deposited into the matrix by this cell line, become covalently cross-linked to the type II N-procollagen. The results indicate that the assembly and intertype cross-linking of the cartilage type II collagen heteropolymer is an integral, early process in fibril assembly and can occur efficiently prior to the removal of the collagen II N-propeptides.  相似文献   

10.
Decorin binds near the C terminus of type I collagen   总被引:5,自引:0,他引:5  
Decorin belongs to a family of small leucine-rich proteoglycans that are directly involved in the control of matrix organization and cell growth. Genetic evidence indicates that decorin is required for the proper assembly of collagenous matrices. Here, we sought to establish the precise binding site of decorin on type I collagen. Using rotary shadowing electron microscopy and photoaffinity labeling, we mapped the binding site of decorin protein core to a narrow region near the C terminus of type I collagen. This region is located within the cyanogen bromide peptide fragment alpha1(I) CB6 and is approximately 25 nm from the C terminus, in a zone that coincides with the c(1) band of the collagen fibril d-period. This location is very close to one of the major intermolecular cross-linking sites of collagen heterotrimers. Thus, decorin protein core possesses a unique binding specificity that could potentially regulate collagen fibril stability.  相似文献   

11.
Lysyl oxidase plays a critical role in the formation of the extracellular matrix, and its activity is required for the normal maturation and cross-linking of collagen and elastin. An 18-kDa lysyl oxidase propeptide (LOPP) is generated from 50-kDa prolysyl oxidase by extracellular proteolytic cleavage during the biosynthesis of active 30-kDa lysyl oxidase enzyme. The fate and the functions of the LOPP are largely unknown, although intact LOPP was previously observed in osteoblast cultures. We investigated the spatial localization of molecular forms of lysyl oxidase, including LOPP in proliferating and differentiating osteoblasts, by using confocal immunofluorescence microscopy and Western blots of cytoplasmic and nuclear extracts. In the present study, a stage-dependent intracellular distribution of LOPP in the osteoblastic cell was observed. In proliferating osteoblasts, LOPP epitopes were principally associated with the Golgi and endoplasmic reticulum, and mature lysyl oxidase epitopes were found principally in the nucleus and perinuclear region. In differentiating cells, LOPP and mature lysyl oxidase immunostaining showed clear colocalization with the microtubule network. The subcellular distribution of LOPP and its temporal and physical association with microtubules were confirmed by Western blot and far Western blot studies. We also report that N-glycosylated and nonglycosylated LOPP are present in MC3T3-E1 cell cultures. We conclude that LOPP has a stage-dependent intracellular distribution in osteoblastic cells. Future studies are needed to investigate whether the LOPP associations with microtubules or the osteoblast nucleus have functional effects for osteoblast differentiation and bone formation. microtubules; confocal immunofluorescence microscopy; extracellular matrix; osteoblast differentiation  相似文献   

12.
The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an α1(II) and an α1(III) telopeptide to the α1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) inhibits osteoblast function in vitro by inhibiting collagen deposition. Studies generally support that TNF-alpha does not inhibit collagen biosynthesis by osteoblasts but that collagen deposition is in some way diminished. The study investigated TNF-alpha regulation of biosynthetic enzymes and proteins crucial for posttranslational extracellular collagen maturation in osteoblasts including procollagen C-proteinases, procollagen C-proteinase enhancer, and lysyl oxidase. The working hypothesis is that such regulation could inhibit collagen deposition by osteoblasts. We report that in phenotypically normal MC3T3-E1 osteoblasts, TNF-alpha decreases collagen deposition without decreasing collagen mRNA levels or procollagen protein synthesis. Analyses of the cell layers revealed that TNF-alpha diminished the levels of mature collagen cross-links, pyridinoline and deoxypyridinoline. Further analyses revealed that the mRNA expression for lysyl oxidase, the determining enzyme required for collagen cross-linking, is down-regulated by TNF-alpha in a concentration- and time-dependent manner by up to 50%. The decrease was accompanied by a significant reduction of lysyl oxidase protein levels and enzyme activity. By contrast, Northern and Western blotting studies revealed that procollagen C-proteinases bone morphogenic protein-1 and mammalians Tolloid and procollagen C-proteinase enhancer were expressed in MC3T3-E1 cells and not down-regulated. The data together demonstrate that TNF-alpha does not inhibit collagen synthesis but does inhibit the expression and activity of lysyl oxidase in osteoblasts, thereby contributing to perturbed collagen cross-linking and accumulation. These studies identify a novel mechanism in which proinflammatory cytokine modulation of an extracellular biosynthetic enzyme plays a determining role in the control of collagen accumulation by osteoblasts.  相似文献   

14.
Type I collagen, the predominant protein of vertebrates, polymerizes with type III and V collagens and non-collagenous molecules into large cable-like fibrils, yet how the fibril interacts with cells and other binding partners remains poorly understood. To help reveal insights into the collagen structure-function relationship, a data base was assembled including hundreds of type I collagen ligand binding sites and mutations on a two-dimensional model of the fibril. Visual examination of the distribution of functional sites, and statistical analysis of mutation distributions on the fibril suggest it is organized into two domains. The "cell interaction domain" is proposed to regulate dynamic aspects of collagen biology, including integrin-mediated cell interactions and fibril remodeling. The "matrix interaction domain" may assume a structural role, mediating collagen cross-linking, proteoglycan interactions, and tissue mineralization. Molecular modeling was used to superimpose the positions of functional sites and mutations from the two-dimensional fibril map onto a three-dimensional x-ray diffraction structure of the collagen microfibril in situ, indicating the existence of domains in the native fibril. Sequence searches revealed that major fibril domain elements are conserved in type I collagens through evolution and in the type II/XI collagen fibril predominant in cartilage. Moreover, the fibril domain model provides potential insights into the genotype-phenotype relationship for several classes of human connective tissue diseases, mechanisms of integrin clustering by fibrils, the polarity of fibril assembly, heterotypic fibril function, and connective tissue pathology in diabetes and aging.  相似文献   

15.
Lysyl oxidase catalyzes the final enzymatic step required for collagen and elastin cross-linking in extracellular matrix biosynthesis. Pro-lysyl oxidase is processed by procollagen C-proteinase activity, which also removes the C-propeptides of procollagens I-III. The Bmp1 gene encodes two procollagen C-proteinases: bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD). Mammalian Tolloid-like (mTLL)-1 and -2 are two genetically distinct BMP-1-related proteinases, and mTLL-1 has been shown to have procollagen C-proteinase activity. The present study is the first to directly compare pro-lysyl oxidase processing by these four related proteinases. In vitro assays with purified recombinant enzymes show that all four proteinases productively cleave pro-lysyl oxidase at the correct physiological site but that BMP-1 is 3-, 15-, and 20-fold more efficient than mTLL-1, mTLL-2, and mTLD, respectively. To more directly assess the roles of BMP-1 and mTLL-1 in lysyl oxidase activation by connective tissue cells, fibroblasts cultured from Bmp1-null, Tll1-null, and Bmp1/Tll1 double null mouse embryos, thus lacking BMP-1/mTLD, mTLL-1, or all three enzymes, respectively, were assayed for lysyl oxidase enzyme activity and for accumulation of pro-lysyl oxidase and mature approximately 30-kDa lysyl oxidase. Wild type cells or cells singly null for Bmp1 or Tll1 all produced both pro-lysyl oxidase and processed lysyl oxidase at similar levels, indicating apparently normal levels of processing, consistent with enzyme activity data. In contrast, double null Bmp1/Tll1 cells produced predominantly unprocessed 50-kDa pro-lysyl oxidase and had lysyl oxidase enzyme activity diminished by 70% compared with wild type, Bmp1-null, and Tll1-null cells. Thus, the combination of BMP-1/mTLD and mTLL-1 is shown to be responsible for the majority of processing leading to activation of lysyl oxidase by murine embryonic fibroblasts, whereas in vitro studies identify pro-lysyl oxidase as the first known substrate for mTLL-2.  相似文献   

16.
Differentiation of phenotypically normal osteoblast cultures leads to formation of a bone-like extracellular matrix in vitro. Maximum collagen synthesis occurs early in the life of these cultures, whereas insoluble collagen deposition occurs later and is accompanied by a diminished rate of collagen synthesis. The mechanisms that control collagen deposition seem likely to include regulation of extracellular collagen biosynthetic enzymes, but expression patterns of these enzymes in differentiating osteoblasts has received little attention. The present study determined the regulation of lysyl oxidase as a function of differentiation of phenotypically normal murine MC3T3-E1 cells at the level of RNA and protein expression and enzyme activity. In addition, the regulation of BMP-1/mTLD mRNA levels that encodes procollagen C-proteinases was assayed. The role of lysyl oxidase in controlling insoluble collagen accumulation was further investigated in inhibition studies utilizing beta-aminopropionitrile, a specific inhibitor of lysyl oxidase enzyme activity. Results indicate that lysyl oxidase is regulated as a function of differentiation of MC3T3-E1 cells, and that the maximum increase in lysyl oxidase activity precedes the most efficient phase of insoluble collagen accumulation. By contrast BMP-1/mTLD is more constitutively expressed. Inhibition of lysyl oxidase in these cultures increases the accumulation of abnormal collagen fibrils, as determined by solubility studies and by electron microscopy. Taken together, these data support that regulation of lysyl oxidase activity plays a key role in the control of collagen deposition by osteoblast cultures.  相似文献   

17.
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN (β-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.  相似文献   

18.
Lysyl oxidase is the enzyme that is essential for collagen and elastin cross-linking. Previous investigations showed that lysyl oxidase is down-regulated in many human tumors and ras-transformed cells. Recently, we proved that antisense down-regulation of lysyl oxidase in NRK-49F cells induced phenotypic changes and oncogenic transformation, characterized by p21(ras) activation and beta-catenin/cyclin D1 up-regulation. In the present paper, we examined beta-catenin intracellular distribution and its association with E-cadherin. We observed an increased association between E-cadherin and beta-catenin in the lysyl-oxidase down-regulated cells during serum starvation. Moreover, we found that beta-catenin cytoplasmic and nuclear levels were increased, suggesting a failure of its down-regulation by the APC-GSK-3beta system, in particular the GSK-3beta phosphorylation of ser-33/37 and thr-41 of beta-catenin. Finally, we investigated the mechanisms leading to the observed cyclin D1 up-regulation. We showed that in the antisense lysyl oxidase cells the cyclin D1 promoter was activated through the LEF and the ATF/CRE sites in the proximal promoter. While the promoter activation through LEF is compatible with beta-catenin signaling, we investigated the possibility that the CRE-dependent activation might be linked to the down-regulation of lysyl oxidase. In fact, up-regulation of lysyl oxidase in a COS-7 cell model showed a significant diminution of the CREB protein binding to the cyclin D1 promoter, leading to a dramatic inhibition of its activity and a significant down-regulation of cyclin D1 protein level in vivo. Finally, our study describes some major anomalies occurring in lysyl oxidase down-regulated fibroblasts, related to beta-catenin signaling and cyclin D1 expression.  相似文献   

19.
Fibromodulin (FMOD) is a small leucine-rich proteoglycan that plays roles in a series of biological and pathophysiological processes. The interaction between FMOD and lysyl oxidase (LOX; collagen cross-linking enzyme) helps regulate extracellular matrix composition, and thereby, provides a permissive environment for regulating cellular turnover. FMOD has been mostly studied in the context of matrix component assembly, but during recent years its association with muscle development, cell reprogramming, and the angiogenic program have demonstrated its activities well beyond extracellular matrix maintenance. In fact, the involvement of FMOD in these cellular processes places it the centrum of cellular behaviour and ultimately of tissue properties. Thus, a clear view of the impact FMOD has on tissue integrity would aid its exploitation for tissue modelling and in the treatment of different disorders.  相似文献   

20.
Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-β activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-β1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-β1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-β bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号