首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prototypical 5′-nuclease, flap endonuclease-1 (FEN1), catalyzes the essential removal of single-stranded flaps during DNA replication and repair. FEN1 hydrolyzes a specific phosphodiester bond one nucleotide into double-stranded DNA. This specificity arises from double nucleotide unpairing that places the scissile phosphate diester on active site divalent metal ions. Also related to FEN1 specificity is the helical arch, through which 5′-flaps, but not continuous DNAs, can thread. The arch contains basic residues (Lys-93 and Arg-100 in human FEN1 (hFEN1)) that are conserved by all 5′-nucleases and a cap region only present in enzymes that process DNAs with 5′ termini. Proline mutations (L97P, L111P, L130P) were introduced into the hFEN1 helical arch. Each mutation was severely detrimental to reaction. However, all proteins were at least as stable as wild-type (WT) hFEN1 and bound substrate with comparable affinity. Moreover, all mutants produced complexes with 5′-biotinylated substrate that, when captured with streptavidin, were resistant to challenge with competitor DNA. Removal of both conserved basic residues (K93A/R100A) was no more detrimental to reaction than the single mutation R100A, but much less severe than L97P. The ability of protein-Ca2+ to rearrange 2-aminopurine-containing substrates was monitored by low energy CD. Although L97P and K93A/R100A retained the ability to unpair substrates, the cap mutants L111P and L130P did not. Taken together, these data challenge current assumptions related to 5′-nuclease family mechanism. Conserved basic amino acids are not required for double nucleotide unpairing and appear to act cooperatively, whereas the helical cap plays an unexpected role in hFEN1-substrate rearrangement.  相似文献   

2.
Trinucleotide repeats can form stable secondary structures that promote genomic instability. To determine how such structures are resolved, we have defined biochemical activities of the related RAD2 family nucleases, FEN1 (Flap endonuclease 1) and EXO1 (exonuclease 1), on substrates that recapitulate intermediates in DNA replication. Here, we show that, consistent with its function in lagging strand replication, human (h) FEN1 could cleave 5′-flaps bearing structures formed by CTG or CGG repeats, although less efficiently than unstructured flaps. hEXO1 did not exhibit endonuclease activity on 5′-flaps bearing structures formed by CTG or CGG repeats, although it could excise these substrates. Neither hFEN1 nor hEXO1 was affected by the stem-loops formed by CTG repeats interrupting duplex regions adjacent to 5′-flaps, but both enzymes were inhibited by G4 structures formed by CGG repeats in analogous positions. Hydroxyl radical footprinting showed that hFEN1 binding caused hypersensitivity near the flap/duplex junction, whereas hEXO1 binding caused hypersensitivity very close to the 5′-end, correlating with the predominance of hFEN1 endonucleolytic activity versus hEXO1 exonucleolytic activity on 5′-flap substrates. These results show that FEN1 and EXO1 can eliminate structures formed by trinucleotide repeats in the course of replication, relying on endonucleolytic and exonucleolytic activities, respectively. These results also suggest that unresolved G4 DNA may prevent key steps in normal post-replicative DNA processing.  相似文献   

3.
Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5′-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5′-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences.  相似文献   

4.
Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.  相似文献   

5.
The structure- and strand-specific phosphodiesterase flap endonuclease-1 (FEN1), the prototypical 5′-nuclease, catalyzes the essential removal of 5′-single-stranded flaps during replication and repair. FEN1 achieves this by selectively catalyzing hydrolysis one nucleotide into the duplex region of substrates, always targeting the 5′-strand. This specificity is proposed to arise by unpairing the 5′-end of duplex to permit the scissile phosphate diester to contact catalytic divalent metal ions. Providing the first direct evidence for this, we detected changes induced by human FEN1 (hFEN1) in the low-energy CD spectra and fluorescence lifetimes of 2-aminopurine in substrates and products that were indicative of unpairing. Divalent metal ions were essential for unpairing. However, although 5′-nuclease superfamily-conserved active-site residues K93 and R100 were required to produce unpaired product, they were not necessary to unpair substrates. Nevertheless, a unique arrangement of protein residues around the unpaired DNA was detected only with wild-type protein, suggesting a cooperative assembly of active-site residues that may be triggered by unpaired DNA. The general principles of FEN1 strand and reaction-site selection, which depend on the ability of juxtaposed divalent metal ions to unpair the end of duplex DNA, may also apply more widely to other structure- and strand-specific nucleases.  相似文献   

6.
The SLX1–SLX4 structure-specific endonuclease complex is involved in processing diverse DNA damage intermediates, including resolution of Holliday junctions, collapse of stalled replication forks and removal of DNA flaps. The nuclease subunit SLX1 is inactive on its own, but become activated upon binding to SLX4 via its conserved C-terminal domain (CCD). Yet, how the SLX1–SLX4 complex recognizes specific DNA structure and chooses cleavage sites remains unknown. Here we show, through a combination of structural, biochemical and computational analyses, that the SAP domain of SLX4 is critical for efficient and accurate processing of 5′-flap DNA. It binds the minor groove of DNA about one turn away from the flap junction, and the 5′-flap is implicated in binding the core domain of SLX1. This binding mode accounts for specific recognition of 5′-flap DNA and specification of cleavage site by the SLX1–SLX4 complex.  相似文献   

7.
MUS81 plays important cellular roles in the restart of stalled replication forks, the resolution of recombination intermediates and in telomere length maintenance. Although the actions of MUS81-EME1 have been extensively investigated, MUS81 is the catalytic subunit of two human structure-selective endonucleases, MUS81-EME1 and MUS81-EME2. Little is presently known about the activities of MUS81-EME2. Here, we have purified MUS81-EME2 and compared its activities with MUS81-EME1. We find that MUS81-EME2 is a more active endonuclease than MUS81-EME1 and exhibits broader substrate specificity. Like MUS81-EME1, MUS81-EME2 cleaves 3′-flaps, replication forks and nicked Holliday junctions, and exhibits limited endonuclease activity with intact Holliday junctions. In contrast to MUS81-EME1, however, MUS81-EME2 cuts D-loop recombination intermediates and in so doing disengages the D-loop structure by cleaving the 3′-invading strand. Additionally, MUS81-EME2 acts on 5′-flap structures to cleave off a duplex arm, in reactions that cannot be promoted by MUS81-EME1. These studies suggest that MUS81-EME1 and MUS81-EME2 exhibit similar and yet distinct DNA structure selectivity, indicating that the two MUS81 complexes may promote different nucleolytic cleavage reactions in vivo.  相似文献   

8.
The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3′–5′ exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo to carry out strand displacement synthesis and discovered that it is regulated by the 5′-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5′-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5′-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.  相似文献   

9.
Dna2 is a nuclease/helicase with proposed roles in DNA replication, double-strand break repair and telomere maintenance. For each role Dna2 is proposed to process DNA substrates with a 5′-flap. To date, however, Dna2 has not revealed a preference for binding or cleavage of flaps over single-stranded DNA. Using DNA binding competition assays we found that Dna2 has substrate structure specificity. The nuclease displayed a strong preference for binding substrates with a 5′-flap or some variations of flap structure. Further analysis revealed that Dna2 recognized and bound both the single-stranded flap and portions of the duplex region immediately downstream of the flap. A model is proposed in which Dna2 first binds to a flap base, and then the flap threads through the protein with periodic cleavage, to a terminal flap length of ∼5 nt. This resembles the mechanism of flap endonuclease 1, consistent with cooperation of these two proteins in flap processing.  相似文献   

10.
The active site of the tyrosine family site-specific recombinase Flp contains a conserved catalytic pentad that includes two arginine residues, Arg-191 and Arg-308. Both arginines are essential for the transesterification steps of strand cleavage and strand joining in DNA substrates containing a phosphate group at the scissile position. During strand cleavage, the active site tyrosine supplies the nucleophile to form a covalent 3′-phosphotyrosyl intermediate. The 5′-hydroxyl group produced by cleavage provides the nucleophile to re-form a 3′-5′ phosphodiester bond in a recombinant DNA strand. In previous work we showed that substitution of the scissile phosphate (P) by the charge neutral methylphosphonate (MeP) makes Arg-308 dispensable during the catalytic activation of the MeP diester bond. However, in the Flp(R308A) reaction, water out-competes the tyrosine nucleophile (Tyr-343) to cause direct hydrolysis of the MeP diester bond. We now report that for MeP activation Arg-191 is also not required. In contrast to Flp(R308A), Flp(R191A) primarily mediates normal cleavage by Tyr-343 but also exhibits a weaker direct hydrolytic activity. The cleaved MeP-tyrosyl intermediate formed by Flp(R191A) can be targeted for nucleophilic attack by a 5′-hydroxyl or water and channeled toward strand joining or hydrolysis, respectively. In collaboration with wild type Flp, Flp(R191A) promotes strand exchange between MeP- and P-DNA partners. Loss of a catalytically crucial positively charged side chain can thus be suppressed by a compensatory modification in the DNA substrate that neutralizes the negative charge on the scissile phosphate.  相似文献   

11.
As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.  相似文献   

12.
XPF is a structure-specific endonuclease that preferentially cleaves 3′ DNA flaps during a variety of repair processes. The crystal structure of a crenarchaeal XPF protein bound to a DNA duplex yielded insights into how XPF might recognise branched DNA structures, and recent kinetic data have demonstrated that the sliding clamp PCNA acts as an essential cofactor, possibly by allowing XPF to distort the DNA structure into a proper conformation for efficient cleavage to occur. Here, we investigate the solution structure of the 3′-flap substrate bound to XPF in the presence and absence of PCNA using intramolecular Förster resonance energy transfer (FRET). We demonstrate that recognition of the flap substrate by XPF involves major conformational changes of the DNA, including a 90° kink of the DNA duplex and organization of the single-stranded flap. In the presence of PCNA, there is a further substantial reorganization of the flap substrate bound to XPF, providing a structural basis for the observation that PCNA has an essential catalytic role in this system. The wider implications of these observations for the plethora of PCNA-dependent enzymes are discussed.  相似文献   

13.
The specificity of vaccinia topoisomerase for transesterification to DNA at the sequence 5′-CCCTT and its versatility in strand transfer have illuminated the recombinogenic properties of type IB topoisomerases and spawned topoisomerase-based strategies for DNA cloning. Here we characterize a pathway of topoisomerase-mediated DNA ligation in which enzyme bound covalently to a CCCTT end with an unpaired +1T nucleotide rapidly and efficiently joins the CCCTT strand to a duplex DNA containing a 3′ A overhang. The joining reaction occurs with high efficiency, albeit slowly, to duplex DNAs containing 3′ G, T or C overhangs. Strand transfer can be restricted to the correctly paired 3′ A overhang by including 0.5 M NaCl in the ligation reaction mixture. The effects of base mismatches and increased ionic strength on the rates of 3′ overhang ligation provide a quantitative picture of the relative contributions of +1 T:A base pairing and electrostatic interactions downstream of the scissile phosphate to the productive binding of an unlinked acceptor DNA to the active site. The results clarify the biochemistry underlying topoisomerase-cloning of PCR products with non-templated 3′ overhangs.  相似文献   

14.
Flap endonuclease 1 (FEN1) proteins, which are present in all kingdoms of life, catalyze the sequence-independent hydrolysis of the bifurcated nucleic acid intermediates formed during DNA replication and repair. How FEN1s have evolved to preferentially cleave flap structures is of great interest especially in light of studies wherein mice carrying a catalytically deficient FEN1 were predisposed to cancer. Structural studies of FEN1s from phage to human have shown that, although they share similar folds, the FEN1s of higher organisms contain a 3′-extrahelical nucleotide (3′-flap) binding pocket. When presented with 5′-flap substrates having a 3′-flap, archaeal and eukaryotic FEN1s display enhanced reaction rates and cleavage site specificity. To investigate the role of this interaction, a kinetic study of human FEN1 (hFEN1) employing well defined DNA substrates was conducted. The presence of a 3′-flap on substrates reduced Km and increased multiple- and single turnover rates of endonucleolytic hydrolysis at near physiological salt concentrations. Exonucleolytic and fork-gap-endonucleolytic reactions were also stimulated by the presence of a 3′-flap, and the absence of a 3′-flap from a 5′-flap substrate was more detrimental to hFEN1 activity than removal of the 5′-flap or introduction of a hairpin into the 5′-flap structure. hFEN1 reactions were predominantly rate-limited by product release regardless of the presence or absence of a 3′-flap. Furthermore, the identity of the stable enzyme product species was deduced from inhibition studies to be the 5′-phosphorylated product. Together the results indicate that the presence of a 3′-flap is the critical feature for efficient hFEN1 substrate recognition and catalysis.In eukaryotic DNA replication and repair, various bifurcated nucleic acid structure intermediates are formed and must be processed by the appropriate nuclease. Two examples of biological processes that create bifurcated DNA intermediates are Okazaki fragment maturation (1, 2) and long patch excision repair (3). In both models, a polymerase executes strand-displacement synthesis to create a double-stranded DNA (dsDNA)6 two-way junction from which a 5′-flap structure protrudes. The penultimate step of both pathways is the cleavage of this flap structure to create a nicked DNA that is then ligated. Because the bifurcated DNA structures that are formed in the aforementioned processes can theoretically occur anywhere in the genome, the nuclease associated with the cleavage of 5′-flap structures in eukaryotic cells, which is called flap endonuclease 1 (FEN1), must be capable of cleavage regardless of sequence. Therefore, FEN1 nucleases, which are found in all kingdoms of life (4), have evolved to recognize substrates based upon nucleic acid structure and strand polarity (5, 6).The Okazaki fragment maturation pathway of yeast has become a paradigm of eukaryotic lagging strand DNA synthesis. In the yeast model, bifurcated intermediates with large single-stranded DNA (ssDNA) 5′-flap structures are imprecisely cleaved by DNA2 in a replication protein A -dependent manner (7). Subsequent to the DNA2 cleavage, Rad27 (yeast homologue of FEN1) cleaves precisely to generate an intermediate suitable for ligation (2). The recent discovery that human DNA2 is predominantly located in mitochondria in various human cell lines (8, 9) suggests that hFEN1 is the paramount 5′-flap endonuclease in the nuclei of human cells. This observation potentially provides a plausible rationale for why deletion of RAD27 (yeast FEN1 homologue) is tolerated in Saccharomyces cerevisiae (10), whereas deletion of FEN1 in mammals is embryonically lethal (11). Recent models wherein mice carrying a mutation (E160D) in the FEN1 gene, which was shown in vitro to alter enzymatic properties (12), have demonstrated that FEN1 functional deficiency in mice (S129 and Black 6) increases the incidence of cancer, albeit different types presumably due to genetic background (13, 14). Thus, the function of mammalian FEN1 in vivo is vital to the prevention of genomic instability. In addition to its importance in the nucleus, hFEN1 has recently been detected in mitochondrial extracts (15, 16) and implicated in mitochondrial long patch base excision repair (15). Considering the pivotal roles of hFEN1 in DNA replication and repair, it is of interest to understand how hFEN1 and homologues achieve substrate and scissile phosphate selectivity in the absence of sequence information.Since its initial discovery as a nuclease that completes reconstituted Okazaki fragment maturation (17) and subsequent rediscovery as a 5′-flap-specific nuclease (DNaseIV) from bacteria (18), mouse (19), and HeLa cells (20), FEN1 proteins ranging from phage to human have been studied biochemically, computationally, and structurally (5, 6, 21). Biochemical characterizations of FEN1 proteins from various organisms have shown that this family of nucleases can perform phosphodiesterase activity on a wide variety of substrates; however, the efficiency of catalysis on various substrates differs among the species. For instance, phage FEN1s prefer pseudo-Y substrates (22, 23), whereas the archaeal and eukaryotic FEN1s prefer 5′-flap substrates (21, 24, 25), which have two dsDNA domains, one upstream and downstream of the site of cleavage, and a 5′-ssDNA protrusion (Fig. 1A). Primary sequence analysis indicates that FEN1 proteins share characteristic N-terminal (N) and Intermediate (I) “domains,” which harbor the highly conserved carboxylate residues that bind the requisite divalent metal ions (2628). Structural studies of FEN1 nucleases from phage to humans (22, 2936), have shown that the N and I domains comprise a single nuclease core domain consisting of a mixed, six- or seven-stranded β-sheet packed against an α-helical structure on both sides. The α-helices on either side of the β-sheet are “bridged” by a helical arch that spans the active site groove (supplemental Fig. S1). On one side of the β-sheet, the α-helical bundle (αb1) creates the floor of the active site and a DNA binding motif (helix-3-turn-helix) (32). Similarly, the opposite α-helical bundle (αb2) has also been observed to interact with DNA (35). Based on site-directed mutagenesis studies with T5 phage FEN1 (T5FEN1) (37) and hFEN1 (38, 39), and crystallographic studies of T4 phage FEN1 (T4FEN1) (22) and Archaeoglobus fulgidus FEN1 (aFEN1) (35) in complex with DNA, a general model for how FEN1 proteins recognize flap DNA has emerged. The helix-3-turn-helix motif is involved in downstream dsDNA binding, whereas the upstream dsDNA domain is bound by αb2. The helical arch is likely involved in 5′-flap binding (22).Open in a separate windowFIGURE 1.Secondary structure schematics of hFEN1 substrates. A, illustration of a general flap substrate created using a bimolecular approach whereby a template strand (T-strand), which partially folds into a hairpin, anneals with the duplex strand (d-strand). The T-strand hairpin creates the upstream dsDNA domain, whereas the d-strand base pairs with the T-strand to create the downstream dsDNA domain. The flap or any other structure is created by addition of nucleotides to the 5′-end of the d-strand. The interface between the upstream and downstream dsDNA domains may be viewed as a derivative of a two-way junction (74). Annealing of either the F(5), E, or G(15) d-strands with the T3F T-strand results in the formation of a (B) double flap substrate (Flap of 5-nt d-strand paired with a Template with a 3′-Flap, F(5)·T3F), C, exonuclease substrate with a 3′-extrahelical nucleotide (EXO d-strand paired with a Template with a 3′-Flap, E·T3F), and a D, fork-GEN substrate with a 3′-extrahelical nucleotide and a 15-nt ssDNA gap capped by a 23-nt hairpin structure (fork-Gap of 15-nt d-strand paired with a Template with a 3′-Flap, G(15)·T3F). E, annealing the F(5) d-strand with the T oligonucleotide creates a single flap (Flap of 5-nt d-strand paired with a Template, F(5)·T).Unlike phage FEN1s, studies of FEN1s from eubacterial (40), archaeal (21), and eukaryotic origins (41) have shown that the addition of a 3′-extrahelical nucleotide (3′-flap) to the upstream duplex of a 5′-flap substrate results in a rate enhancement and an increase in cleavage site specificity. Moreover, substrates possessing a 3′-flap, which mimic physiological “equilibrating flaps,” were cleaved exactly one nucleotide into the downstream duplex, thereby resulting in 5′-phosphorylated dsDNA product that was a suitable substrate for DNA ligase I (21, 41). As postulated by Kaiser et al. (21), the structure of an archaeal FEN1 in complex with dsDNA with a 3′-overhang showed that the protein contains a cleft adjacent to the upstream dsDNA binding site that binds the 3′-flap by means of van der Waals and hydrogen bonding interactions with the sugar moiety (35). Once the residues associated with 3′-flap binding were identified, sequence alignment analyses showed that the amino acid residues in the 3′-flap binding pocket are highly conserved from archaea to human. Furthermore, mutation of the conserved amino acid residues in the 3′-flap binding pocket of hFEN1 resulted in reduced affinity for and cleavage specificity on double flap substrates (42). Although the effects of the addition of a 3′-flap to substrates on hFEN1 catalysis are known qualitatively, a detailed understanding of the relationship between changes in catalytic parameters and rate enhancement by the presence of a 3′-flap is unknown. Here, we describe a detailed kinetic analysis of hFEN1 using four well characterized DNA substrates and show that the presence of a 3′-flap on a substrate not only contributes to substrate binding (42), but also increases multiple and single turnover rates of reaction in the presence of near physiological monovalent salt concentrations. We also demonstrate that, like T5FEN1, hFEN1 is rate-limited by product release, and thus multiple turnover rates at saturating concentrations of substrate are predominantly a reflection of product release and not catalysis as was previously concluded (39). Furthermore, this study provides insight into the mechanism of hFEN1 substrate recognition.  相似文献   

15.
16.
Mycobacterial AdnAB is a heterodimeric DNA helicase-nuclease and 3′ to 5′ DNA translocase implicated in the repair of double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Inclusion of mycobacterial single strand DNA-binding protein (SSB) in reactions containing linear plasmid dsDNA allowed us to study the AdnAB helicase under conditions in which the unwound single strands are coated by SSB and thereby prevented from reannealing or promoting ongoing ATP hydrolysis. We found that the AdnAB motor catalyzed processive unwinding of 2.7–11.2-kbp linear duplex DNAs at a rate of ∼250 bp s−1, while hydrolyzing ∼5 ATPs per bp unwound. Crippling the AdnA phosphohydrolase active site did not affect the rate of unwinding but lowered energy consumption slightly, to ∼4.2 ATPs bp−1. Mutation of the AdnB phosphohydrolase abolished duplex unwinding, consistent with a model in which the “leading” AdnB motor propagates a Y-fork by translocation along the 3′ DNA strand, ahead of the “lagging” AdnA motor domain. By tracking the resection of the 5′ and 3′ strands at the DSB ends, we illuminated a division of labor among the AdnA and AdnB nuclease modules during dsDNA unwinding, whereby the AdnA nuclease processes the unwound 5′ strand to liberate a short oligonucleotide product, and the AdnB nuclease incises the 3′ strand on which the motor translocates. These results extend our understanding of presynaptic DSB processing by AdnAB and engender instructive comparisons with the RecBCD and AddAB clades of bacterial helicase-nuclease machines.  相似文献   

17.
Bacteriophage T4 RNase H, a flap endonuclease-1 family nuclease, removes RNA primers from lagging strand fragments. It has both 5' nuclease and flap endonuclease activities. Our previous structure of native T4 RNase H (PDB code 1TFR) revealed an active site composed of highly conserved Asp residues and two bound hydrated magnesium ions. Here, we report the crystal structure of T4 RNase H in complex with a fork DNA substrate bound in its active site. This is the first structure of a flap endonuclease-1 family protein with its complete branched substrate. The fork duplex interacts with an extended loop of the helix-hairpin-helix motif class 2. The 5' arm crosses over the active site, extending below the bridge (helical arch) region. Cleavage assays of this DNA substrate identify a primary cut site 7-bases in from the 5' arm. The scissile phosphate, the first bond in the duplex DNA adjacent to the 5' arm, lies above a magnesium binding site. The less ordered 3' arm reaches toward the C and N termini of the enzyme, which are binding sites for T4 32 protein and T4 45 clamp, respectively. In the crystal structure, the scissile bond is located within the double-stranded DNA, between the first two duplex nucleotides next to the 5' arm, and lies above a magnesium binding site. This complex provides important insight into substrate recognition and specificity of the flap endonuclease-1 enzymes.  相似文献   

18.
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5′ overhangs relative to the 3′ overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having ≥18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3′ overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5′ overhangs, it could also catalyze significant unwinding of substrates containing 3′ overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5′ → 3′ and weak 3′ → 5′ unwinding activities. The extent of unwinding of Y-shaped DNA structures was ∼3-fold lower compared with duplexes with 5′ overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.  相似文献   

19.
Flap endonuclease-1 (FEN-1) is a structure-specific nuclease best known for its involvement in RNA primer removal and long-patch base excision repair. This enzyme is known to possess 5′-flap endo- (FEN) and 5′–3′ exo- (EXO) nuclease activities. Recently, FEN-1 has been reported to also possess a gap endonuclease (GEN) activity, which is possibly involved in apoptotic DNA fragmentation and the resolution of stalled DNA replication forks. In the current study, we compare the kinetics of these activities to shed light on the aspects of DNA structure and FEN-1 DNA-binding elements that affect substrate cleavage. By using DNA binding deficient mutants of FEN-1, we determine that the GEN activity is analogous to FEN activity in that the single-stranded DNA region of DNA substrates interacts with the clamp region of FEN-1. In addition, we show that the C-terminal extension of human FEN-1 likely interacts with the downstream duplex portion of all substrates. Taken together, a substrate-binding model that explains how FEN-1, which has a single active center, can have seemingly different activities is proposed. Furthermore, based on the evidence that GEN activity in complex with WRN protein cleaves hairpin and internal loop substrates, we suggest that the GEN activity may prevent repeat expansions and duplication mutations.  相似文献   

20.
T5 5′–3′ exonuclease is a member of a homologous group of 5′ nucleases which require divalent metal co-factors. Structural and biochemical studies suggest that single-stranded DNA substrates thread through a helical arch or hole in the protein, thus bringing the phosphodiester backbone into close proximity with the active site metal co-factors. In addition to the expected use of Mg2+, Mn2+ and Co2+ as co-factors, we found that divalent zinc, iron, nickel and copper ions also supported catalysis. Such a range of co-factor utilisation is unusual in a single enzyme. Some co-factors such as Mn2+ stimulated the cleavage of double-stranded closed-circular plasmid DNA. Such endonucleolytic cleavage of circular double-stranded DNA cannot be readily explained by the threading model proposed for the cleavage of substrates with free 5′-ends as the hole observed in the crystal structure of T5 exonuclease is too small to permit the passage of double-stranded DNA. We suggest that such a substrate may gain access to the active site of the enzyme by a process which does not involve threading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号