共查询到20条相似文献,搜索用时 0 毫秒
1.
Anan Chen Tara K. Akhshi Brigitte D. Lavoie Andrew Wilde 《The Journal of biological chemistry》2015,290(21):13500-13509
The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin β2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin β2 binding does not regulate anillin''s function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin''s function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division. 相似文献
2.
3.
The viral cDNA nuclear import is an important requirement for human immunodeficiency virus type 1 (HIV-1) replication in dividing and nondividing cells. Our recent study identified a specific interaction of importin α3 (Impα3) with HIV-1 integrase (IN) and its involvement in viral cDNA nuclear import. In this study, we have performed a more detailed investigation on the molecular mechanism of how HIV-1 IN interacts with Impα3. Our results revealed a reduced interaction between the two IN mutants INKK215,9AA (IN215,9) and INRK263,4AA (IN263,4) with Impα3, while an IN double mutant, IN215,9/263,4, was severely impaired for its Impα3-binding ability, even though it was still found interacting with other cofactors, IN interactor I and Transportin3. Immunostaining and fractionation analysis have shown that YFP-IN215,9/263,4 failed to localize in the nucleus of transfected cells. Also, we found that both major and minor nuclear localization signal binding grooves of Impα3 are involved in interaction with IN. All of these results suggest a cargo protein-import receptor type of interaction. Finally, the effect of IN215,9/263,4 mutations on HIV-1 replication was evaluated, and real-time quantitative PCR analysis showed that, while mutant virus (v215,9/263,4) had a slightly lowered total viral DNA, the 2-long-terminal-repeat DNA, a marker for nuclear import, was greatly reduced during v215,9/263,4 infection in both dividing and nondividing cells. Also, by cell fractionation assay, we found that a significant proportion of viral cDNA was still retained in cytoplasmic fraction of v215,9/263,4-infected cells. Overall, our study provides strong evidence that 211KELQKQITK and 262RRKAK regions of IN C-terminal domain are required for Impα3 interaction and HIV-1 cDNA nuclear import. 相似文献
4.
Prohibitin Inhibits Tumor Necrosis Factor alpha–induced Nuclear Factor-kappa B Nuclear Translocation via the Novel Mechanism of Decreasing Importin α3 Expression 下载免费PDF全文
Arianne L. Theiss Aaron K. Jenkins Ngozi I. Okoro Jan-Michael A. Klapproth Didier Merlin Shanthi V. Sitaraman 《Molecular biology of the cell》2009,20(20):4412-4423
5.
Carly R. Desmond Randy Singh Atwal Jianrun Xia Ray Truant 《The Journal of biological chemistry》2012,287(47):39626-39633
Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity. 相似文献
6.
7.
8.
9.
Toshiyasu Goto Atsushi Sato Shungo Adachi Shun-ichiro Iemura Tohru Natsume Hiroshi Shibuya 《The Journal of biological chemistry》2013,288(51):36351-36360
In the canonical Wnt signaling pathway, the translocation of β-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of β-catenin function via importin-β5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of β-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-β5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and β-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of β-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of β-catenin in the canonical Wnt signaling pathway. 相似文献
10.
Natalia E. Bernardes Agnes A. S. Takeda Thiago R. Dreyer Fernanda Z. Freitas Maria Célia Bertolini Marcos R. M. Fontes 《PloS one》2015,10(6)
Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site. 相似文献
11.
12.
13.
Localization of α-galactosidase in an alkalophilic strain of Micrococcus was investigated in relation to the cell membrane as a permeability barrier. The most α-galactosidase appered to be intracellular; only about 4% of α-galactosidase was released by lysozyme or freeze-thaw treatments of the whole cells. The enzyme activity was not inhibited by treatment of the whole cells with diazo-7-amino-1,3-naphthalene disulfonic acid (NDS) which penetrated the cell wall but not the cytoplasmic membrane. The enzyme activity of the whole cells increased about four-fold by toluene-acetone treatment which caused an alteration in the membrane permeability. The enzyme in such cells became to be relatively sensitive to pH. These results showed that cell membrane played a protective role as a permeability barrier against alkaline environment. 相似文献
14.
15.
Nayebzadeh Neda Vazir Bita Zendehdel Morteza Asghari Ahamd 《International journal of peptide research and therapeutics》2020,26(1):1-10
International Journal of Peptide Research and Therapeutics - The aim of the current study was to determine possible interaction of central Opioidergic and Adrenergic systems on food intake... 相似文献
16.
Hattori T Sakabe Y Ogata M Michishita K Dohra H Kawagishi H Totani K Nikaido M Nakamura T Koshino H Usui T 《Carbohydrate research》2012,347(1):16-22
The enzymatic synthesis of an α-chitin-like substance via a non-biosynthetic pathway has been achieved by transglycosylation in an aqueous system of the corresponding substrate, tri-N-acetylchitotriose [(GlcNAc)(3)] for lysozyme. A significant amount of water-insoluble product precipitated out from the reaction system. MALDI-TOFMS analysis showed that the resulting precipitate had a degree of polymerization (DP) of up to 15 from (GlcNAc)(3). Solid-state (13)C NMR analysis revealed that the resulting water-insoluble product is a chitin-like substance consisting of N-acetylglucosamine (GlcNAc) residues joined exclusively in a β-(1→4)-linked chain with stringent regio-/stereoselection. X-ray diffraction (XRD) measurement as well as (13)C NMR analysis showed that the crystal structure of synthetic product corresponds to α-chitin with a high degree of crystallinity. We propose that the multiple oligomers form an α-chitin-like substance as a result of self-assembly via oligomer-oligomer interaction when they precipitate. 相似文献
17.
18.
19.
Expressed protein ligation bridges the gap between synthetic peptides and recombinant proteins and thereby significantly increases the size and complexity of chemically synthesized proteins. Although the intein-based expressed protein ligation method has been extensively used in this regard, the development of new expressed protein ligation methods may improve the flexibility and power of protein semisynthesis. In this study a new alternative version of expressed protein ligation is developed by combining the recently developed technologies of hydrazide-based peptide ligation and genetic code expansion. Compared to the previous intein-based expressed protein ligation method, the new method does not require the use of protein splicing technology and generates recombinant protein α-hydrazides as ligation intermediates that are more chemically stable than protein α-thioesters. Furthermore, the use of an evolved mutant pyrrolysyl-tRNA synthetase(PylRS), ACPK-RS, from M. barkeri shows an improved performance for the expression of recombinant protein backbone oxoesters. By using HdeA as a model protein we demonstrate that the hydrazide-based method can be used to synthesize proteins with correctly folded structures and full biological activity. Because the PylRS-tRNACUAPyl system is compatible with both prokaryotic and eukaryotic cells,the strategy presented here may be readily expanded to manipulate proteins produced in mammalian cells. The new hydrazide-based method may also supplement the intein-based expressed protein ligation method by allowing for a more flexible selection of ligation site. 相似文献
20.
Ng CA Hunter MJ Perry MD Mobli M Ke Y Kuchel PW King GF Stock D Vandenberg JI 《PloS one》2011,6(1):e16191
The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS) domain (residues 26-135) as well as an amphipathic α-helix (residues 13-23) and an initial unstructured segment (residues 2-9). Deletion of residues 2-25, only the unstructured segment (residues 2-9) or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel. 相似文献