首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   

2.
Matrix metalloproteinase (MMP)-12 (or metalloelastase) efficiently hydrolyzed the gelatinase-selective alpha1(V)436-447 fluorescent triple helical peptide (THP) when the substrate was submicromolar. The sequence of this THP was derived from collagen V, a component of collagen I fibrils. The hemopexin domains of MMP-12 and -9 each increased k(cat)/K(m) toward this substrate by decreasing K(m), just as the hemopexin domain of MMP-1 enhances its triple helical peptidase activity. Non-fluorescent alpha1(V) THP subtly perturbed amide NMR chemical shifts of MMP-12 not only in the active site cleft but also at remote sites of the beta-sheet and adjoining loops. The alpha1(V) THP protected MMP-12 from the NMR line broadening effects of Gd .EDTA in the active site cleft and more dramatically in the V-B loop next to the primed subsites. Mutagenesis of the exosite in the V-B loop at Thr-205 and His-206 that vary among MMP sequences established that this site supports the high specific activity toward alpha1(V) fluorescent THP without affecting general MMP activity. Surprisingly the alpha1(V) THP also protected novel surfaces in the S-shaped metal-binding loop and beta-strands III and V that together form a pocket on the remote side of the zinc binding site. The patterns of protection suggest bending of the triple helical peptide partly around the catalytic domain to reach novel exosites. Partial unwinding or underwinding of the triple helix could accompany this to facilitate its hydrolysis.  相似文献   

3.
The catalytic domain of metalloelastase (matrix metalloproteinase-12 or MMP-12) is unique among MMPs in exerting high proteolytic activity upon fibrils that resist hydrolysis, especially elastin from lungs afflicted with chronic obstructive pulmonary disease or arteries with aneurysms. How does the MMP-12 catalytic domain achieve this specificity? NMR interface mapping suggests that α-elastin species cover the primed subsites, a strip across the β-sheet from β-strand IV to the II–III loop, and a broad bowl from helix A to helix C. The many contacts may account for the comparatively high affinity, as well as embedding of MMP-12 in damaged elastin fibrils in vivo. We developed a strategy called BINDSIght, for bioinformatics and NMR discovery of specificity of interactions, to evaluate MMP-12 specificity without a structure of a complex. BINDSIght integration of the interface mapping with other ambiguous information from sequences guided choice mutations in binding regions nearer the active site. Single substitutions at each of ten locations impair specific activity toward solubilized elastin. Five of them impair release of peptides from intact elastin fibrils. Eight lesions also impair specific activity toward triple helices from collagen IV or V. Eight sites map to the “primed” side in the III–IV, V–B, and S1′ specificity loops. Two map to the “unprimed” side in the IV–V and B–C loops. The ten key residues circumscribe the catalytic cleft, form an exosite, and are distinctive features available for targeting by new diagnostics or therapeutics.  相似文献   

4.
5.
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.  相似文献   

6.
Excessive cathepsin K (catK)-mediated turnover of fibrillar type I and II collagens in bone and cartilage leads to osteoporosis and osteoarthritis. However, little is known about how catK degrades compact collagen macromolecules. The present study is aimed to explore the structural and mechanical consequences of collagen fiber degradation by catK. Mouse tail type I collagen fibers were incubated with either catK or non-collagenase cathepsins. Methods used include scanning electron microscopy, protein electrophoresis, atomic force microscopy, and tensile strength testing. Our study revealed evidence of proteoglycan network degradation, followed by the progressive disassembly of macroscopic collagen fibers into primary structural elements by catK. Proteolytically released GAGs are involved in the generation of collagenolytically active catK-GAG complexes as shown by AFM. In addition to their structural disintegration, a decrease in the tensile properties of fibers was observed due to the action of catK. The Young''s moduli of untreated collagen fibers versus catK-treated fibers in dehydrated conditions were 3.2 ± 0.68 GPa and 1.9 ± 0.65 GPa, respectively. In contrast, cathepsin L, V, B, and S revealed no collagenase activity, except the disruption of proteoglycan-GAG interfibrillar bridges, which slightly decreased the tensile strength of fibers.  相似文献   

7.
Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11'). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11') of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.  相似文献   

8.
Binding of thrombospondin (TSP) to types I-V collagen was examined by direct binding assays using 125I-TSP and by visualization of rotary-shadowed intermolecular complexes in the electron microscope. The binding of TSP was highest to type V collagen in the absence of Ca, while lower but significant levels of binding were observed to all other collagen types in the presence or absence of Ca. Unlike intact TSP, the trimeric collagen-binding domain of TSP composed of 70-kD chains showed no Ca dependence in its binding to type V collagen. Further evidence for binding of TSP to types I and III collagen was obtained by competition studies in which these soluble collagens effectively inhibited binding of 125I-TSP to immobilized type V collagen. The binding of TSP to type V collagen was inhibited by heparin and fucoidin, both high-affinity ligands of TSP's heparin-binding domain. mAb A6.1, which binds to the 70-kD domain of TSP, is also the best of a panel of anti-TSP mAbs at inhibiting the TSP-collagen interaction. Electron microscopy of rotary-shadowed replicas of TSP-collagen complexes revealed that all five types of collagen examined had a binding site for TSP at one end of the pepsinized, triple helical molecule. The specificity of this site was tested by examining the ability of BSA to form a complex with the end of the pepsinized collagens. Rotary-shadowed replicas revealed a low frequency of apparent BSA-collagen complexes, and histograms of these data showed no evidence for the preferential association of BSA with the end of the collagen molecules. In addition to the specific end site, type V collagen had an internal binding site for TSP located about two-thirds of the distance along the length of the collagen molecule from the end site. The internal binding site for TSP on type V collagen is apparently the site responsible for the higher affinity binding of TSP to that protein observed in direct binding assays. The trimeric 70-kD collagen-binding domain of TSP bound to the same sites on the collagens as did intact TSP.  相似文献   

9.
Protealysin (PLN) belongs to the M4 family of peptidases that are commonly known as thermolysin-like proteases (TLPs). All TLPs are synthesized as precursors containing N-terminal propeptides. According to the primary structure of the N-terminal propeptides, the family is divided into two distinct groups. Representatives of the first group including thermolysin and all TLPs with known three-dimensional structures have long prosequences (∼200 amino acids). Enzymes of the second group, whose prototype is protealysin, have short (∼50 amino acids) propeptides. Here, we present the 1.8 Å crystal structure of PLN precursor (proPLN), which is the first three-dimensional structure of a TLP precursor. Whereas the structure of the catalytic domain of proPLN is similar overall to previously reported structures of mature TLPs, it has specific features, including the absence of calcium-binding sites, and different structures of the N-terminal region and substrate-binding site. PLN propeptide forms a separate domain in the precursor and likely acts as an inhibitor that blocks the substrate-binding site and fixes the “open” conformation of the active site, which is unfavorable for catalysis. Furthermore the conserved PPL motif identified in our previous studies directly interacts with the S′ subsites of the active center being a critical element of the propeptide-catalytic domain interface. Comparison of the primary structures of TLPs with short propeptides suggests that the specific features revealed in the proPLN crystal structure are typical for all protealysin-like enzymes. Thus, such proteins can be considered as a separate subfamily of TLPs.  相似文献   

10.
Conjugates of ubiquitin or its homologues to other proteins occur by strictly ordered steps with ordered addition of substrates for each step. High concentrations of E2 were shown to inhibit the formation of E2∼Ubl thioester and Ubl∼target conjugates. We investigated the mechanism of such inhibitory effect of the SUMO E2 and whether the E2 has two binding sites on its E1, one for the inhibitory effect and one for productive SUMOylation. NMR methods in combination with mutagenesis and biochemical assays revealed that Ubc9 binds to two flexible domains of its free E1 simultaneously, suggesting extensive domain movements in the free E1. Further, interaction of free E1 and E2 inhibits SUMO adenylation, and the interfaces responsible for the inhibition were the same as those required for productive transfer of SUMO from E1 to E2. This study indicates a conformational flexibility-dependent mechanism to control the strictly ordered steps in Ubl modifications.  相似文献   

11.
Mycobacterial AdnAB is a heterodimeric DNA helicase-nuclease and 3′ to 5′ DNA translocase implicated in the repair of double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Inclusion of mycobacterial single strand DNA-binding protein (SSB) in reactions containing linear plasmid dsDNA allowed us to study the AdnAB helicase under conditions in which the unwound single strands are coated by SSB and thereby prevented from reannealing or promoting ongoing ATP hydrolysis. We found that the AdnAB motor catalyzed processive unwinding of 2.7–11.2-kbp linear duplex DNAs at a rate of ∼250 bp s−1, while hydrolyzing ∼5 ATPs per bp unwound. Crippling the AdnA phosphohydrolase active site did not affect the rate of unwinding but lowered energy consumption slightly, to ∼4.2 ATPs bp−1. Mutation of the AdnB phosphohydrolase abolished duplex unwinding, consistent with a model in which the “leading” AdnB motor propagates a Y-fork by translocation along the 3′ DNA strand, ahead of the “lagging” AdnA motor domain. By tracking the resection of the 5′ and 3′ strands at the DSB ends, we illuminated a division of labor among the AdnA and AdnB nuclease modules during dsDNA unwinding, whereby the AdnA nuclease processes the unwound 5′ strand to liberate a short oligonucleotide product, and the AdnB nuclease incises the 3′ strand on which the motor translocates. These results extend our understanding of presynaptic DSB processing by AdnAB and engender instructive comparisons with the RecBCD and AddAB clades of bacterial helicase-nuclease machines.  相似文献   

12.
13.
Cathepsin K is a potent extracellular matrix-degrading protease that requires interactions with soluble glycosaminolycans for its collagenolytic activity in bone and cartilage. The major sources of glycosaminoglycans in cartilage are aggrecan aggregates. Therefore, we investigated whether cathepsin K activity is capable to hydrolyze aggrecan into fragments allowing the formation of glycosaminoglycan-cathepsin K complexes and determined the cleavage site specificity of cathepsin K toward the cartilage-resident link protein and aggrecan. The cleavage site specificity was compared with those of cathepsins S and L. All three cathepsins released glycosaminoglycans from native bovine cartilage at lysosomal pH and to a lesser degree at neutral extracellular pH. Cathepsin-predigested aggrecan complexes and cartilage provided suitable glycosaminoglycan fragments that allowed the formation of collagenolytically active cathepsin K complexes. A detailed analysis of the degradation of aggrecan aggregates revealed two cathepsin K cleavage sites in the link protein and several sites in aggrecan, including one site within the interglobular domain E1. In summary, these results demonstrate that cathepsin K is capable to degrade aggrecan complexes at specific cleavage sites and that cathepsin K activity alone is sufficient to self-provide the glycosaminoglycan fragments required for the formation of its collagenolytically active complex.  相似文献   

14.
Human fatty acid synthase (FAS) is a large, multidomain protein that synthesizes long chain fatty acids. Because these fatty acids are primarily provided by diet, FAS is normally expressed at low levels; however, it is highly up-regulated in many cancers. Human enoyl-acyl carrier protein-reductase (hER) is one of the FAS catalytic domains, and its inhibition by drugs like triclosan (TCL) can increase cytotoxicity and decrease drug resistance in cancer cells. We have determined the structure of hER in the presence and absence of TCL. TCL was not bound in the active site, as predicted, but rather at the protein-protein interface (PPI). TCL binding induces a dimer orientation change that causes downstream structural rearrangement in critical active site residues. Kinetics studies indicate that TCL is capable of inhibiting the isolated hER domain with an IC50 of ∼55 μm. Given the hER-TCL structure and the inhibition observed in the hER domain, it seems likely that TCL is observed in the physiologically relevant binding site and that it acts as an allosteric PPI inhibitor. TCL may be a viable scaffold for the development of anti-cancer PPI FAS inhibitors.  相似文献   

15.
Matrix metalloproteinases and collagen catabolism   总被引:5,自引:0,他引:5  
The matrix metalloproteinase (MMP)/matrixin family has been implicated in both normal tissue remodeling and a variety of diseases associated with abnormal turnover of extracellular matrix components. The mechanism by which MMPs catabolize collagen (collagenolysis) is still largely unknown. Substrate flexibility, MMP active sites, and MMP exosites all contribute to collagen degradation. It has recently been demonstrated that the ability to cleave a triple helix (triple-helical peptidase activity) can be distinguished from the ability to cleave collagen (collagenolytic activity). This suggests that the ability to cleave a triple helix is not the limiting factor for collagenolytic activity-the ability to properly orient and potentially destabilize collagen is. For the MMP family, the catalytic domain can unwind and cleave a triple-helical structure, while the C-terminal hemopexin-like domain appears to be responsible for properly orienting collagen and destabilizing it to some degree. It is also possible that exosites within the catalytic and/or C-terminal hemopexin-like domain may exclude some MMPs from cleaving collagen. Overall, it appears that many proteases of distinct mechanisms possess triple-helical peptidase activity, and that convergent evolution led to a few proteases possessing collagenolytic activity. Proper orientation and distortion of the triple helix may be the key factor for collagenolysis.  相似文献   

16.
The mechanism by which enzymes recognize the “uniform” collagen triple helix is not well understood. Matrix metalloproteinases (MMPs) cleave collagen after the Gly residue of the triplet sequence Gly∼[Ile/Leu]-[Ala/Leu] at a single, unique, position along the peptide chain. Sequence analysis of types I-III collagen has revealed a 5-triplet sequence pattern in which the natural cleavage triplets are always flanked by a specific distribution of imino acids. NMR and MMP kinetic studies of a series of homotrimer peptides that model type III collagen have been performed to correlate conformation and dynamics at, and near, the cleavage site to collagenolytic activity. A peptide that models the natural cleavage site is significantly more active than a peptide that models a potential but non-cleavable site just 2-triplets away and NMR studies show clearly that the Ile in the leading chain of the cleavage peptide is more exposed to solvent and less locally stable than the Ile in the middle and lagging chains. We propose that the unique local instability of Ile at the cleavage site in part arises from the placement of the conserved Pro at the P3 subsite. NMR studies of peptides with Pro substitutions indicate that the local dynamics of the three chains are directly modulated by their proximity to Pro. Correlation of peptide activity to NMR data shows that a single locally unstable chain at the cleavage site, rather than two or three labile chains, is more favorable for cleavage by MMP-1 and may be the determining factor for collagen recognition.  相似文献   

17.
Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.  相似文献   

18.
Matrix metalloproteinases are a family of zinc endopeptidases involved in tissue remodelling. They have been implicated in various disease processes including tumour invasion and joint destruction. These enzymes consist of several domains, which are responsible for latency, catalysis and substrate recognition. Human neutrophil collagenase (PMNL-CL, MMP-8) represents one of the two 'interstitial' collagenases that cleave triple helical collagens types I, II and III. Its 163 residue catalytic domain (Met80 to Gly242) has been expressed in Escherichia coli and crystallized as a non-covalent complex with the inhibitor Pro-Leu-Gly-hydroxylamine. The 2.0 A crystal structure reveals a spherical molecule with a shallow active-site cleft separating a smaller C-terminal subdomain from a bigger N-terminal domain, composed of a five-stranded beta-sheet, two alpha-helices, and bridging loops. The inhibitor mimics the unprimed (P1-P3) residues of a substrate; primed (P1'-P3') peptide substrate residues should bind in an extended conformation, with the bulky P1' side-chain fitting into the deep hydrophobic S1' subsite. Modelling experiments with collagen show that the scissile strand of triple-helical collagen must be freed to fit the subsites. The catalytic zinc ion is situated at the bottom of the active-site cleft and is penta-coordinated by three histidines and by both hydroxamic acid oxygens of the inhibitor. In addition to the catalytic zinc, the catalytic domain harbours a second, non-exchangeable zinc ion and two calcium ions, which are packed against the top of the beta-sheet and presumably function to stabilize the catalytic domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In this work we describe the self-assembly of a collagen-like periodic mini-fibril from a recombinant triple helix. The triple helix, designated Col108, is expressed in Escherichia coli using an artificial gene and consists of a 378-residue triple helix domain organized into three pseudo-repeating sequence units. The peptide forms a stable triple helix with a melting temperature of 41 °C. Upon increases of pH and temperature, Col108 self-assembles in solution into smooth mini-fibrils with the cross-striated banding pattern typical of fibrillar collagens. The banding pattern is characterized by an axially repeating feature of ∼35 nm as observed by transmission electron microscopy and atomic force microscopy. Both the negatively stained and the positively stained transmission electron microscopy patterns of the Col108 mini-fibrils are consistent with a staggered arrangement of triple helices having a staggering value of 123 residues, a value closely connected to the size of one repeat sequence unit. A mechanism is proposed for the mini-fibril formation of Col108 in which the axial periodicity is instigated by the built-in sequence periodicity and stabilized by the optimized interactions between the triple helices in a 1-unit staggered arrangement. Lacking hydroxyproline residues and telopeptides, two factors implicated in the fibrillogenesis of native collagen, the Col108 mini-fibrils demonstrate that sequence features of the triple helical domain alone are sufficient to “code” for axially repeating periodicity of fibrils. To our knowledge, Col108 is the first designed triple helix to self-assemble into periodic fibrils and offers a unique opportunity to unravel the specific molecular interactions of collagen fibrillogenesis.  相似文献   

20.
Catalysis of collagen degradation by matrix metalloproteinase 1 (MMP-1) has been proposed to critically rely on flexibility between the catalytic (CAT) and hemopexin-like (HPX) domains. A rigorous assessment of the most readily accessed conformations in solution is required to explain the onset of substrate recognition and collagenolysis. The present study utilized paramagnetic NMR spectroscopy and small angle x-ray scattering (SAXS) to calculate the maximum occurrence (MO) of MMP-1 conformations. The MMP-1 conformations with large MO values (up to 47%) are restricted into a relatively small conformational region. All conformations with high MO values differ largely from the closed MMP-1 structures obtained by x-ray crystallography. The MO of the latter is ∼20%, which represents the upper limit for the presence of this conformation in the ensemble sampled by the protein in solution. In all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. Thus, overall analysis of the highest MO conformations indicated that MMP-1 in solution was poised to interact with collagen and then could readily proceed along the steps of collagenolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号