首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic starch nanoparticles were obtained by aqueous polyelectrolyte complex formation between cationic quaternary ammonium substituted starches and anionic sodium tripolyphosphate. The formation of nanosized starch particles of spherical shape was verified by dynamic light scattering and scanning electron microscopy measurements. The cationic starch nanoparticles of different constitution and containing various contents of free quaternary ammonium groups were produced and their zeta potential was modulated between +4 mV and +34 mV by varying polycation/polyanion ratio. Furthermore, the polyelectrolyte complex formation was confirmed by differential scanning calorimetry and FTIR analyses. The thermal stability of cationic starch nanoparticles increased with the introduction of polysalt into polyelectrolyte complex. The solubilization capacity of nanoparticles was varying with the concentration and composition as revealed by fluorescence probe experiments. The capability to accommodate hydrophobic pyrene quest molecule was decreasing with the increasing number of cationic groups in cationic starches and little depended on polyanion/polycation ratio in starch nanoparticles.  相似文献   

2.
Interaction of invertase with polyelectrolytes   总被引:1,自引:0,他引:1  
In connection with our work on polyelectrolyte complex formation with polyampholytes, the interaction between invertase and several linear polyelectorlytes has been investigated by means of turbidimetry, light scattering measurements, and determination of the enzyme activity. Polyelectrolyte complex formation of invertase was shown to occur with cationic polyelectrolytes only. The light-scattering data yield information on aggregation and desegregation processes in complex formation. As indicated by our results, only a part of the protein molecules is engaged in this Coulombic interaction, and this part shows a rather small enzyme activity only. Thus, a direct interaction between invertase and a cationic polyelectrolyte is no effective approach to enzyme binding, but a complete immobilization of invertase can be achieved via an "inclusion flocculation" with a symplex formed by interaction between an anionic and a cationic linear polyelectrolyte or via immobilization in symplex microcapsules.  相似文献   

3.
Cationic starch (D.S. 0.065) and anionic starch (D.S. 0.037) were used to form biopolyelectrolyte multilayers. The influence of the solution concentration of NaCl on the adsorption of starch onto silicon oxide substrates and on the formation of multilayers was investigated using stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). The wet adhesive properties of the starch multilayers were examined by measuring pull-off forces with the AFM colloidal probe technique. It was shown that polyelectrolyte multilayers (PEM) can be successfully constructed from cationic starch and anionic starch at electrolyte concentrations of 1 mM NaCl and 10 mM NaCl. The water content of the PEMs was approximately 80% at both electrolyte concentrations. However, the thickness of the PEMs formed at 10 mM NaCl was approximately twice the thickness formed at 1 mM NaCl. The viscoelastic properties of the starch PEMs, modeled as Voigt elements, were dependent on the polyelectrolyte that was adsorbed in the outermost layer. The PEMs appeared to be more rigid when capped by anionic starch than when capped by cationic starch. The wet adhesive pull-off forces increased with layer number and were also dependent on the polyelectrolyte adsorbed in the outermost layer. Thus, starch PEM treatment has a large potential for increasing the adhesive interaction between solid substrates to levels higher than can be reached by a single layer of cationic starch.  相似文献   

4.
Clearance of minute virus of mice (MVM) from CHO cell suspensions by flocculation and microfiltration has been investigated. MVM is a parvovirus that is recommended by the U.S. Food and Drug Administration for validating clearance of parvoviruses. The feed streams were flocculated using a cationic polyelectrolyte. Virus clearance in excess of 10,000-fold was obtained in the bulk permeate for flocculated feeds streams. However, the level of clearance was only about 10- to 100-fold for unflocculated feed streams. The results suggest that virus clearance involves interactions between the MVM particles, the cationic polyelectrolyte, and the CHO cells present. Validating virus clearance is a major concern in the biotechnology industry. New unit operations are frequently added to the purification train simply to validate virus clearance. However, many of these unit operations are less effective at validating clearance of nonenveloped viruses. Validating clearance of parvoviruses is often particularly problematic as they are nonenveloped and the virus particles are small (18 to 24 nm), making physical removal difficult. The results obtained herein indicate that addition of the cationic polyelectrolyte not only results in significant clearance of MVM but also leads to an increase in permeate flux.  相似文献   

5.
Kim HS  Jung SH  Kim SH  Suh IB  Kim WJ  Jung JW  Yuk JS  Kim YM  Ha KS 《Proteomics》2006,6(24):6426-6432
We investigated the potential use of a spectral surface plasmon resonance (SPR) biosensor in a high-throughput analysis of mumps virus and a mumps virus-specific mAb on the arrays of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA). The PDDA surface was constructed by electrostatic adsorption of the polyelectrolyte onto a monolayer of 11-mercaptoundecanoic acid (MUA). Poly-L-lysine was also adsorbed onto the MUA monolayer and compared with the PDDA surface in the capacity of mumps virus immobilization. The PDDA surface showed a higher adsorption of mumps virus than the poly-L-lysine surface. The SPR signal caused by the virus binding onto the PDDA surface was proportional to the concentration of mumps virus from 0.5 x 10(5) to 14 x 10(5) pfu/mL. The surface structure of the virus arrays was visualized by atomic force microscopy. Then, a dose-dependent increase in the SPR signal was observed when various concentrations of the antimumps virus antibody in buffer or human serum were applied to the virus arrays, and their interaction was specific. Thus, it is likely that the spectral SPR biosensor based on the cationic polyelectrolyte surface may provide an efficient system for a high-throughput analysis of intact virus and serodiagnosis of infectious diseases.  相似文献   

6.
The use of polyelectrolyte surface-modified Cowpea mosaic virus (CPMV) for the templated synthesis of narrowly dispersed gold nanoparticles is described. The cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), is electrostatically bound to the external surface of the virus capsid; the polyelectrolyte promotes the adsorption of anionic gold complexes, which are then easily reduced, under mild conditions, to form a metallic gold coating. As expected, the templated gold nanoparticles can be further modified with thiol reagents. In contrast, reaction of polyelectrolyte-modified CPMV (CPMV-PA) with preformed gold nanoparticles results in the self-assembly of large, hexagonally packed, tessellated-spheres.  相似文献   

7.
A new family of block polyelectrolyte networks containing cross-linked poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) was synthesized by copolymerization of acrylic acid and bisacrylated PEO (10 kDa). Two materials with different PEO/PAA ratios were compared with a weakly cross-linked PAA homopolymer network. The networks bound a cationic protein, cytochrome C, due to the polyion coupling, leading to the network contraction. After binding the protein the block polyelectrolyte networks were more porous compared to a homopolymer network, facilitating protein absorption within the gel. The protein was released by adding Ca2+ ions or a polycation. Ca2+ ions migrated within the gels and reacted with PAA chains, thus displacing the protein. The polycation transfer into hydrogels, as a result of polyion substitution reactions, was inhibited by the excess of PEO chains in the block polyelectrolyte networks. Overall, these findings advance development of functional polyelectrolyte networks for immobilization and controlled release of proteins.  相似文献   

8.
An antisense oligonucleotide (ODN), c-myb, was covalently conjugated to poly(ethylene glycol) (PEG) via an acid-cleavable phosphoramidate linkage to form a diblock copolymer-like structure. The phosphoramidate linkage between ODN and PEG was completely cleaved within 5 h in an endosomal acidic condition (pH 4.7). When complexed with a cationic fusogenic peptide, KALA, the ODN/PEG conjugate self-associated to form polyelectrolyte complex micelles in an aqueous solution. The anionic ODN segments were ionically interacted with cationic KALA peptide to form an inner polyelectrolyte complex core, while the PEG segments constituted a surrounding corona. Effective hydrodynamic volume of the micelles was ca. 70 nm with a very narrow size distribution. The polyelectrolyte complex micelles, composed of c-myb ODN-PEG conjugate and KALA, were transported into cells far more efficiently than c-myb ODN itself. They also exhibited higher antiproliferative activity against smooth muscle cells. This study demonstrates that the DNA/PEG hybrid micelles system can be applied for the delivery of antisense oligonucleotide.  相似文献   

9.
Washing, freon extraction, and cationic polyelectrolyte precipitation were compared for their ability to reduce cytotoxicity associated with virus concentrates derived from beef extract eluates of wastewater sludges. Eluates concentrated by hydroextraction were usually much more toxic than those concentrated by organic flocculation. This difference may be due entirely to nondialyzable material naturally present in the beef extract which did not precipitate during flocculation at pH 3.5. Washing inoculated cell monolayers with saline containing calf serum before the addition of agar overlay media was most effective in reducing cytotoxicity, although it resulted in a greater virus loss, as compared with freon extraction and cationic polyelectrolyte precipitation.  相似文献   

10.
Washing, freon extraction, and cationic polyelectrolyte precipitation were compared for their ability to reduce cytotoxicity associated with virus concentrates derived from beef extract eluates of wastewater sludges. Eluates concentrated by hydroextraction were usually much more toxic than those concentrated by organic flocculation. This difference may be due entirely to nondialyzable material naturally present in the beef extract which did not precipitate during flocculation at pH 3.5. Washing inoculated cell monolayers with saline containing calf serum before the addition of agar overlay media was most effective in reducing cytotoxicity, although it resulted in a greater virus loss, as compared with freon extraction and cationic polyelectrolyte precipitation.  相似文献   

11.
Immunostimulatory CpG oligonucleotides (ODN) show promise as immune adjuvants, anti-allergens, and immunoprotective agents. Increasing the bioavailability and duration of action of CpG ODN should improve their therapeutic utility. Encapsulating ODN in sterically stabilized cationic liposomes provides protection from serum nucleases while facilitating uptake by B cells, dendritic cells, and macrophages. In a pathogen challenge model, sterically stabilized cationic liposomes encapsulation doubled the duration of CpG ODN-induced immune protection. In an immunization model, coencapsulation of CpG ODN with protein Ag (OVA) magnified the resultant Ag-specific IFN-gamma and IgG responses by 15- to 40-fold compared with Ag plus CpG ODN alone. These findings support the use of sterically stabilized cationic liposomes to significantly enhance the therapeutic efficacy of CpG ODN.  相似文献   

12.
We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a ternary mixed fluid membrane containing neutral (phosphatidylcholine, PC), monovalent (phosphatidylserine, PS), and multivalent (phosphatidylinositol, PIP2) anionic lipids. We systematically explore the influences of polyelectrolyte chain length, polyelectrolyte charge density, polyelectrolyte total charge amount, and salt solution ionic strength on the static and dynamic properties of different anionic lipid species. Our results show that the multivalent PIP2 lipids dominate the polyelectrolyte–membrane interaction and competitively inhibit polyelectrolyte–PS binding. When the total charge amount of the polyelectrolyte is less than that of the local oppositely charged PIP2 lipids, the polyelectrolyte can drag the bound multivalent lipids to diffuse on the membrane, but cannot interact with the PS lipids. Under this condition, the diffusion behaviors of the polyelectrolyte closely follow the prediction of the Rouse model, and the polyelectrolyte chain properties determine the adsorption amount, concentration gradients, and hierarchical mobility of the bound PIP2 lipids. However, when the total charge amount of the polyelectrolyte is larger than that of the local PIP2 lipids, the polyelectrolyte further binds the PS lipids around the polyelectrolyte–PIP2 complex to achieve local electrical neutrality. In this condition, parts of the polyelectrolyte desorb from the membrane and show faster mobility, and the bound PS presents much faster mobility than the segregated PIP2. This work provides an explanation for heterogeneity formation in different anionic lipids induced by polyelectrolyte adsorption.  相似文献   

13.
The potential of cationic polyelectrolytes to precipitate host cell and process related impurities was investigated, to replace one or more chromatography steps in monoclonal antibody purification. The impact of antibody isoelectric point, solution properties (pH and ionic strength), and polyelectrolyte properties (structure, molecular weight and pK(a)) on the degree of precipitation was studied. At neutral pH, increasing solution ionic strength impeded the ionic interaction between the polyelectrolyte and impurities, reducing impurity precipitation. Increasing polyelectrolyte molecular weight and pK(a) enabled precipitation of impurities at higher ionic strength. PoIy(arginine) was selected as the preferred polyelectrolyte in unconditioned cell culture fluid. PoIy(arginine) precipitation achieved consistent host cell protein clearance and antibody recovery for multiple antibodies across a wider range of polyelectrolyte concentrations. Poly(arginine) precipitation was evaluated as a flocculant and as a functional replacement for anion exchange chromatography in an antibody purification process. Upstream treatment of cell culture fluid with poly(arginine) resulted in flocculation of solids (cells and cell debris), and antibody recovery and impurity clearance (host cell proteins, DNA and insulin) comparable to the downstream anion exchange chromatography step.  相似文献   

14.
The polyion complex membrane (PEC) composed of chitosan (Ch) and sodium alginate (NaAlg) designated for the separation of water/organic mixtures by pervaporation and/or direct methanol fuel cell technology was synthesized and analysed by FTIR, DSC, DTG and X-ray diffraction. The polyion complex formation between Ch (cationic polyelectrolyte) and NaAlg (anionic polyelectrolyte) was confirmed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The state of water in pure polyelectrolytes (PE) and PEC was studied by DSC. Results show that freezable and non-freezable water exist in analysed Ch, NaAlg and Ch/NaAlg hydrogels, while there are variations in the amount of non-freezing bound water in PE/water and PEC/water systems. Both ionic crosslinking as well as physical structure influence the state of water, and especially the non-freezable water content, in ionic hydrogel membranes.  相似文献   

15.
Summary The strength of flocs formed by the chitosan induced flocculation of yeast depends on the nature of the suspending medium. The addition of anionic polymers to the medium prior to flocculation by the cationic polyelectrolyte chitosan can increase the resilience of the flocs.  相似文献   

16.
Algal Flocculation with Synthetic Organic Polyelectrolytes   总被引:1,自引:1,他引:0       下载免费PDF全文
The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported.  相似文献   

17.
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.  相似文献   

18.
Molecules of a green fluorescent protein mutant, GFPmut2, have been immobilized in nanocapsules, assemblies of charged polyelectrolyte multilayers, with the aim to study the effect of protein‐polyelectrolyte interactions on the protein stability against chemical denaturation. GFPmut2 proteins turn out to be stabilized and protected against the denaturating action of small chemical compounds. The nanocapsule protective effect on GFPmut2 is likely due to protein interactions with the negatively charged polymers, that induce an increase in the local rigidity of the protein nano‐environment. This suggestion is supported by Fluorescence Polarization measurements on GFPmut2 proteins bound to the NC layers. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Calcium alginate gel stabilized with a polyelectrolyte complex (PEC) consisting of potassium poly(vinyl alcohol) sulfate (KPVS) and trimethylammonium glycol chitosan iodide (TGCI) was used for the immobilization of beta-amylase. The immobilization was made by gelling aqueous droplets of enzyme solution including both sodium alginate and KPVS in a CaCl(2) solution containing TGCI. The activity of the enzyme entrapped into the stabilized gel beads was evaluated by studying the batch reaction kinetics of enzyme-catalyzed hydrolysis of maltotetraose. Repeated kinetic measurements, totaling 18, were carried out at fixed time intervals. After each measurement the beads were stirred for 1 day in a freshly prepared 10 mM NaCl solution at 3 degrees C. It was found that the immobilized system remained stable without leading to a serious loss of the activity or to a large leakage of the enzyme from the support. This was explained as being due to a PEC-crosslinked contracted network structure of the stabilized gel matrix.  相似文献   

20.
The combination of cationic lipids with cationic peptides and DNA vectors can produce synergistic effects in gene delivery to eukaryotic cells. Binary complexes of cationic lipids with DNA are well-studied whereas little information is available about the structure of the ternary lipid/peptide/DNA (LPD) complexes and mechanisms defining DNA protection and delivery. Here we use synchrotron small angle X-ray scattering and dynamic light scattering zeta-potential measurements to determine structure and the net charge of supramolecular aggregates of complexes in mixtures of plasmid DNA, cationic liposomes formed from DOTAP, plus a linear cationic ε-oligolysine with the pendant α-amino acids Leu-Tyr-Arg (LYR), ε-(LYR)K10. These ternary complexes display multilamellar structures with relatively constant separation between DOTAP bilayers, accommodating a hydrated monolayer of parallel DNA rods. The DNA-DNA distance in the complexes varies as a function of the net positive to negative (lipid+peptide)/DNA charge ratio. An explanation for the observed dependence of DNA-DNA distance on charge ratio was proposed based on general polyelectrolyte properties of non-stoichiometric polycation-DNA mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号