首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broomrapes are holoparasitic plants which infect faba bean (Vicia faba L.), among other legumes. Here, we aimed to identify and validate quantitative trait loci (QTLs) for broomrape resistance in the cross 29H × Vf136 and to investigate the existence of common and specific genomic regions against Orobanche crenata and O. foetida. A genetic map including 171 markers was constructed for QTL analyses. Field trials for O. crenata were conducted during three consecutive seasons at Córdoba (Spain) and in a single season at Kafr El-Sheikh (Egypt). QTL analysis for O. foetida was performed using data from a single season at Beja (Tunisia). Seven QTLs for O. crenata were identified. Oc7 on chromosome VI was detected over 3 years at Córdoba, explaining between 22 and 33 % of the phenotypic variation, which make it the most promising candidate for future marker-assisted breeding for broomrape resistance in faba bean. O. crenata QTLs identified at Kafr El-Sheikh did not co-localize with those identified in Córdoba. Environmental differences together with the diversity of parasitic populations between locations may account for the discrepancy. Three QTLs for O. foetida were detected. Co-localization of Oc8 and Of3 in chromosome V confirms a common resistance against both O. crenata and O. foetida, as previously reported.  相似文献   

2.
A composite map of the Vicia faba genome based on morphological markers, isozymes, RAPDs, seed protein genes and microsatellites was constructed. The map incorporates data from 11 F2 families for a total of 654 individuals all sharing the common female parent Vf 6. The integrated map is arranged in 14 major linkage groups (five of which were located in specific chromosomes). These linkage groups include 192 loci and cover 1,559 cM with an overall average marker interval of 8 cM. By joining data of a new F2 population segregating for resistance to ascochyta, broomrape and others traits of agronomic interest, have been saturated new areas of the genome. The combination of trisomic segregation, linkage analysis among loci from different families with a recurrent parent, and the analysis of new physically located markers, has allowed the establishment of the present status of the V. faba map with a wide coverage. This map provides an efficient tool in breeding applications such as disease-resistance mapping, QTL analyses and marker-assisted selection.Communicated by J.W. Snape  相似文献   

3.
4.
The antinutritional factors (ANFs) present in Vicia spp. seeds are a major constraint to the wider utilization of these crops as grain legumes. In the case of faba bean (Vicia faba L.), a breeding priority is the absence vicine and convicine (v-c); responsible for favism in humans and for the reduced animal performance or low egg production in laying hens. The discovery of a spontaneous mutant allele named vc-, which induces a 10–20 fold reduction of v-c contents, may facilitate the process. However, the high cost and difficulty of the chemical detection of v-c seriously restricts the advances in breeding-selection. To identify random amplified polymorphic DNA (RAPD) markers linked to this gene, we have analysed an F2 population derived from a cross between a line with high v-c content (Vf6) and the vc- genotype (line 1268). Quantification of v-c was done by spectrophotometry on the parents and the F2 population (n = 136). By using bulked segregant analysis (BSA), two RAPD markers linked in coupling and repulsion phase to the allele vc- were identified and further converted into sequence characterized amplified regions (SCARs). Amplification of SCARS was more consistent, although the initial polymorphism between pools was lost. To recover the polymorphisms several approaches were explored. Restriction digestion with HhaI (for SCAR SCH01620) and RsaI (for SCAR SCAB12850) revealed clear differences between the parental lines. The simultaneous use of the two cleavage amplified polymorphism (CAP) markers will allow the correct fingerprinting of faba bean plants and can be efficiently used in breeding selection to track the introgression of the vc- allele to develop cultivars with low v-c content and improved nutritional value.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
Summary Length heterogeneity in the ribosomal repeat of Vicia faba is due to the presence of variable numbers of a 325 bp subrepetitive element within the nontranscribed spacer region. The distribution of size classes among 88 individuals within a population was investigated by blot-hybridization. We find that individual plants can exhibit more than 20 size classes and that hybridization patterns are highly diverse from individual to individual, more so than for any species so far investigated. In contrast, no such differences are observed in patterns for different tissues from a single plant or from parental to F1 generation. Some changes were observed in the F2 generation. We conclude that unequal recombination can give rise to the diversity that we observe for the V. faba rDNA repeats.  相似文献   

6.
7.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

8.
Host-plant resistance is the most economic and effective strategy for root-knot nematode (RKN) Meloidogyne incognita control in cotton (Gossypium hirsutum L.). Molecular markers linked to resistance are important for incorporating resistance genes into elite cultivars. To screen for microsatellite markers (SSR) closely linked to RKN resistance in G. hirsutum cv. Acala NemX, F1, F2, BC1F1, and F2:7 recombinant inbred lines (RILs) from intraspecific crosses and an F2 from an interspecific cross with G. barbadense cv. Pima S-7 were used. Screening of 284 SSR markers, which cover all the known identified chromosomes and most linkage groups of cotton, was performed by bulked segregant analysis, revealing informative SSRs. The informative SSRs were then mapped on the above populations. One co-dominant SSR marker CIR316 was identified tightly linked to a major resistance gene (designated as rkn1), producing amplified DNA fragments of approximately 221 bp (CIR316a) and 210 bp (CIR316c) in Acala NemX and susceptible Acala SJ-2, respectively. The linkage between CIR316a marker and resistance gene rkn1 in Acala NemX had an estimated distance of 2.1–3.3 cM depending on the population used. Additional markers, including BNL1231 with loose linkage to rkn1 (map distance 25.1–27.4 cM), BNL1066, and CIR003 allowed the rkn1 gene to be mapped to cotton linkage group A03. This is the first report in cotton with a closely linked major gene locus determining nematode resistance, and informative SSRs may be used for marker-assisted selection.  相似文献   

9.
A simplified and non-destructive method using starch gel electrophoresis has been developed on seeds to identify inbred lines of Vicia faba and assess outcrossing rates and gene dispersal in pollination experiments. Six enzyme systems (Alcohol dehydrogenase, Aspartate aminotransferase, Glucose-6-phosphate isomerase, Isocitrate dehydrogenase, Phosphogluconate dehydrogenase and Shikimate dehydrogenase) were analysed from parental lines, crosses performed between lines bearing dissimilar isozyme patterns in pollination cages with Bombus and F2 progenies obtained from manual selfing of F1 hybrids. The allozymes at each of the seven studied loci segregated in the expected Mendelian fashion and behaved in a co-dominant manner except for the Adh-2 locus where the only variant was a null allele. No evidence of genetic linkage was observed between at least 13 of the 15 pairs of the studied loci. Percentage of cross fertilisation by Bombus between seven pairs of inbred lines ranged between 1.7% and 28.3%. Pollen transfer between a donor line and a recipient line by two species of Bombus did not lead to differences in outcrossing rates (both about 8%). The new PGD marker with two loci at three alleles each is particularly discriminating and valuable in pollination studies and breeding of V. faba.  相似文献   

10.
Recombinant inbred lines for genetic mapping in tomato   总被引:11,自引:5,他引:6  
A cross between the cultivated tomato Lycopersicon esculentum and a related wild species L. cheesmanii yielded 97 recombinant inbred lines (RILs) which were used to construct a genetic map consisting of 132 molecular markers. Significant deviation from the expected 1:1 ratio between the two homozygous classes was found in 73% of the markers. In 98% of the deviating markers, L. esculentum alleles were present in greater frequency than the L. cheesmanii alleles. For most of the markers with skewed segregation, the direction of the deviation was maintained from F2 to F7 generations. The average heterozygosity in the population was 15%. This value is significantly greater than the 1.5% heterozygosity expected for RILs in the F7 generation. On average, recombination between linked markers was twice as high in the RILs than in the F2 population used to derive them. The utility of RILs for the mapping of qualitative and quantitative traits is discussed.  相似文献   

11.

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for developing stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For mapping these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

  相似文献   

12.
 Seven F2 families of faba bean descendent from plants trisomic for chromosomes 3, 4, 5 and 6 were analyzed for isozyme markers and two of these were also studied for morphological and RAPD markers and seed-protein genes. Linkage analysis revealed 14 linkage groups, 8 of which were unambiguously assigned to specific chromosomes. Several QTLs for seed weight were identified, the most important of which, located on chromosome 6, explained approximately 30% of the total phenotypic variation. Comparison of results from Vicia faba with the maps of the related species Pisum sativum L. and Cicer arietinum L. revealed one possible new case of linkage conservation. A composite linkage analysis based on 42 markers analyzed in this and previous studies, where line Vf 6 was also used as the female parental, allowed the new assignment of previously independent linkage groups and/or markers to specific chromosomes. Thus, the number of linkage groups was reduced to 13, each comprising an increased number of markers. No contradictory results were detected, indicating the suitability of the statistical procedure and methodology used so far in the development of the map of this species. Received: 30 April 1998 / Accepted: 24 August 1998  相似文献   

13.
Pyrenophora graminea is the seed-borne pathogen causal agent of barley leaf stripe disease. Near-isogenic lines (NILs) carrying resistance of the cv ”Thibaut” against the highly virulent isolate Dg2 were obtained by introgressing the resistance into the genetic background of the susceptible cv ”Mirco”. The segregation of the resistance gene was followed in a F2 population of 128 plants as well as on the F3 lines derived from the F2 plants; the segregation fitted the 1:2:1 ratio for a single gene. By using NILs, a RAPD marker associated with the resistance gene was identified; sequence-specific (STS) primers were designed on the basis of the amplicon sequence and a RILs mapping population with an AFLP-based map were used to position this molecular marker to barley chromosome 1 S (7HS). STS and CAPS markers were developed from RFLPs mapped to the telomeric region of barley chromosome 7HS and three polymorphic PCR-based markers were developed. The segregation of these markers was followed in the F2 population and their map position with respect to the resistance gene was determined. Our results indicate that the Thibaut resistance gene, which we designated as Rdg2a, maps to the telomeric region of barley chromosome 7HS and is flanked by the markers OPQ-9700 and MWG 2018 at distances of 3.1 and 2.5 cM respectively. The suitability of the PCR-based marker MWG2018 in selection- assisted barley breeding programs is discussed. Received: 22 June 2000 / Accepted: 16 October 2000  相似文献   

14.
Summary To increase the level and stability of yield in faba beans (Vicia faba L.), heterosis must be exploited. Hybrids are not available because of the instability of male sterility. Synthetic varieties can and should be bred. Thus, we studied the reproductive behavior of this partially allogamous, insect-pollinated crop. Autofertility (AF) and the rate of cross-fertilization (C) were measured in 36 inbred lines and 28 crosses in F1, F2, and F3 generations for 3 years at Hohenheim, Stuttgart, FRG. Heterozygosity strongly increased AF and decreased C. AF was negatively correlated with C. AF varied from 1% to 98%, and C varied from 7% to 82%. Heritability for both characters was high. For an optimum exploitation of heterosis, breeders should utilize lines with high C as variety components. It is often labor-intensive to multiply such lines, due to low AF. Hence, breeders tend to use autofertile lines with rather limited C. We showed that even in this case about 50% of the total heterosis, which equals a yield increase of at least 25% over the inbred line level, is realized. An increase in yield stability due to heterogeneity will occur simultaneously.  相似文献   

15.
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pest of soybean worldwide. Host plant resistance is an effective approach to control this pest. Plant introduction PI 567516C has been reported to be highly resistant to multiple-HG types of SCN. The objectives of this study were to identify and map novel quantitative trait loci (QTL) for SCN resistance to six HG types (also known as races 1, 2, 3, 5, 14, and LY1). Mapping was conducted using 250 F2:3 progeny derived from a Magellan (susceptible) × PI 567516C (resistant) cross. F6:7 recombinant inbred lines (RILs) developed from the F2:3 progeny were employed to confirm the putative QTL identified. A total of 927 polymorphic simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) markers were genotyped. Following the genetic linkage analysis, permutation tests and composite interval mapping were performed to identify and map QTL. Four QTL were associated with resistance to either multiple- or single-SCN HG types. Two QTL for resistance to multiple-SCN HG types were mapped to Chromosomes 10 and 18 and have not been reported in other SCN resistance sources. New QTL were confirmed by analysis of 250 F6:7 RILs from the same population. SSR and SNP markers closely associated with these QTL can be useful for the development of near-isogenic lines for fine-mapping and positional cloning of candidate genes for SCN resistance.  相似文献   

16.
Thirteen F2 families of faba bean (Vicia faba L.), descended from plants trisomic for chromosomes 3, 4, 5 and 6, have been analyzed for morphological, isozyme and RAPD markers. This allowed the establishment of linkage relationships among these markers as well as the assignment of some markers and/or linkage groups to their respective chromosomes. The linkage analysis of partially overlapping sets of informative genetic markers for the data pooled from 13 F2 families has revealed 48 linkage groups, six of which have been precisely assigned to specific chromosomes. A statistical procedure to analyze the data of joint segregation analysis in families derived from trisomic plants has been developed.  相似文献   

17.
 Determining the genetic potential of a base population from the properties of their parental lines would improve the efficiency of a breeding program. In the present study, we investigated whether the means of the parents and the genetic distance determined from RAPD data (GD) or multivariate analysis (Mahalanobis D2), mid-parent heterosis (MPH), and the absolute difference between means of the parents (∣P1−P2∣) can be used for predicting the means and genetic variances (σ^2 g ) of F3:4 lines derived from different crosses in faba beans. The material comprised 18 intra- and 18 inter-pool crosses among lines from the Minor, Major, and Mediterranean germplasm pools. Fifty F3:4 lines from each cross were evaluated for days to anthesis, plant height, seeds per plant, and seed yield in German (GE) and Mediterranean (ME) environments. GD estimates between parent lines ranged from 0.38 to 0.58, while D2 ranged from 45.5 to 134.7. Correlations between means of the parents and F3:4 lines were highly significant for most traits. Estimates of σ2 g for all traits showed non-significant correlations with MPH, GD, D2. In one ME, ∣P1−P2∣ had significant associations with σ^2 g for seed yield and days to anthesis. The predicted usefulness of crosses, defined as the sum of the population mean and selection responses, was most closely associated with the means of F3:4 lines. We conclude from this study that the means of F3:4 lines can be predicted from the means of the parents, whereas the prediction of genetic variance is still an unsolved problem Received: 12 December 1997 / Accepted: 13 July 1998  相似文献   

18.
Identification of quantitative trait loci (QTL) for fiber quality traits that are stable across multiple generations and environments could facilitate marker-assisted selection for improving cotton strains. In the present study, F2, F2:3, and recombinant inbred lines (RILs, F 6:8 ) populations derived from an upland cotton (Gossypium hirsutum L.) cross between strain 0-153, which has excellent fiber quality, and strain sGK9708, a commercial transgenic cultivar, were constructed for QTL tagging of fiber quality. We used 5,742 simple sequence repeat primer pairs to screen for polymorphisms between the two parent strains. Linkage maps of F2 and RILs were constructed, containing 155 and 190 loci and with a total map distance of 959.4 centimorgans (cM) and 700.9?cM, respectively. We screened fiber quality QTL across multiple generations and environments through composite interval mapping of fiber quality data. Specifically, we studied F2 and F2:3 family lines from Anyang (Henan Province) in 2003 and 2004 and RILs in Anyang in 2007 and Anyang, Quzhou (Hebei Province), and Linqing (Shandong Province) in 2008. We identified 50 QTL for fiber quality: 10 for fiber strength, 10 for fiber length, 10 for micronaire, eight for fiber uniformity, and 12 for fiber elongation. Nine of these fiber quality QTL were identified in F2, F2:3 and RILs simultaneously. Two QTL for fiber strength on chromosomes C7 and C25 were detected in all three generations and all four environments and explained 16.67?C27.86% and 9.43?C21.36% of the phenotypic variation, respectively. These stable QTL for fiber quality traits could be used for marker assisted selection.  相似文献   

19.
Selection for anthracnose disease resistance is one of the top priorities in white lupin (Lupinus albus) breeding programs. A cross was made between a landrace P27174 (resistant to anthracnose) and a cultivar Kiev Mutant (susceptible). The progeny was advanced to F8 recombinant inbred lines (RILs). Disease tests on the RIL population from field trials over 2 years indicated that the disease resistance in P27174 was polygenic controlled. A modified selective genotyping strategy was applied in the development of molecular markers linked to quantitative loci conferring anthracnose diseases resistance. Eight individual plants representing high level of anthracnose resistance (HR), eight plants representing susceptibility (S), together with eight lines representing medium level of anthracnose resistance (MR), were subjected to DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphisms (MFLP). Six MFLP polymorphisms, which had the banding pattern matching the HR plants and the S plants, were identified as candidate markers linked to quantitative loci conferring anthracnose resistance. The six candidate MFLP markers were delineated into three groups based on their banding variation on the eight MR plants. One candidate MFLP marker each from the three groups was selected, cloned, sequenced, and converted into co-dominant, sequence-specific PCR markers. These three markers, designated as WANR1, WANR2 and WANR3, were tested on a segregating population containing 189 F8 RILs. The disease phenotyping data and the marker genotyping data on the F8 RILs were merged and analysed by the JMP software using the ‘fit-model’ function, which revealed that 71% of the phenotypic variation was controlled by genetic factors, while the other 29% of the phenotypic variation was due to environmental factors and environment × genotype interactions. On individual marker basis, marker WANR1 conditioned 39% of phenotypic variations of anthracnose resistance, followed by marker WANR2 with 8%, and WANR3 with 12%. Further analysis showed that WANR2 and WANR3 were on the same linkage group with a genetic distance of 15.3 cM. The combination of the two markers WANR1 and WANR3 explained 51% out from the 71% of the genetic controlled variations for disease resistance, indicating that the two QTLs working additively for anthracnose disease resistance. A simulation of marker-assisted selection on the F8 RIL population using the two markers WANR1 and WANR3 identified 42 out of the 189 RILs being homozygous for resistance-allele bands for both markers, and 41 of them showed disease severity below 3.0 on the 1 (highly resistant) to 5 (susceptible) scale. The two markers WANR1 and WANR3 have now been implemented for marker-assisted selection for anthracnose resistance in the L. albus breeding program in Australia.  相似文献   

20.
A population of recombinant inbred lines (RIL) derived from a cross between the Watermelon mosaic virus (WMV) resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’ has been evaluated for WMV resistance in spring, fall and growth chamber conditions. The quantitative trait loci (QTL) analyses detected one major QTL (wmv) on linkage group (LG) XI close to the microsatellite marker CMN04_35. This QTL controls the resistance to WMV in the three environmental conditions evaluated. Other minor QTLs affecting the severity of viral symptoms were identified, but they were not detected in all the assayed environments. The screening of the marker CMN04_35 in an F2 progeny, derived from the same cross, confirmed the effect of this QTL on the expression of WMV resistance also in early generations, which evidences the usefulness of this marker for a marker assisted selection program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号