首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在一株具有环酰亚胺转化活性的真养产碱杆菌112R4中发现了一种特异性的二羧酸单酰胺酰胺水解酶(半酰胺酶),它催化环酰亚胺代谢的第二步反应,将二羧酸单酰胺水解为二羧酸和氨。该酶的底物仅限于此代谢途径的第一个酶——酰亚胺酶的产物二羧酸单酰胺,而对其它的酰胺类化合物没有明显水解活性。真养产碱杆菌112R4中的半酰胺酶和酰亚胺酶在表达上具有相关性,环酰亚胺(如琥珀酰亚胺)和二羧酸单酰胺(如琥珀酰胺酸)对它们有正调控作用,游离氨离子显示出负调控作用,琥珀酸则在酶合成和活性两方面均表现出影响作用。对重组大肠杆菌中表达的半酰胺酶粗酶的部分性质进行了研究。钴离子对半酰胺酶的活性表现出促进作用,比活力提高到3.37倍,表明半酰胺酶可能是一种金属结合酶。  相似文献   

2.
The metabolic transformation pathway for cyclic imides in microorganisms was studied in Blastobacter sp. strain A17p-4. This novel pathway involves, in turn, hydrolytic ring opening of a cyclic imide to yield a monoamidated dicarboxylate, hydrolytic deamidation of the monoamidated dicarboxylate to yield a dicarboxylate, and dicarboxylate transformation similar to that in the tricarboxylic acid cycle. The initial step is catalyzed by a novel enzyme, imidase. Imidase and subsequent enzymes involved in this metabolic pathway are induced by some cyclic imides, such as succinimide and glutarimide. Induced cells metabolize various cyclic imides.  相似文献   

3.
To facilitate the easier production of d-amino acids using N-carbamyl-d-amino acid amidohydrolase (DCase) in an immobilized form, we improved the enzymatic thermostability of highly soluble DCase-M3 of Ralstonia pickettii using directed mutagenesis. Six novel mutation sites were identified in this study, apart from several thermostability-related amino acid sites reported previously. The most thermostable mutant, in which the 12th amino acid had been changed from glutamine to leucine, showed a 7 °C increase in thermostability. Comparative characterization of the parental and mutant DCases showed that although there was a slight reduction in the oxidative stability of the mutants, their kinetic properties and high solubility were not affected. The mutated enzymes are expected to be applied to the development of a fully enzymatic process for the industrial production of d-amino acids.  相似文献   

4.
A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid (K(m) = 6.2 mM; k(cat) = 5.76 s(-1)) and glutaramic acid (K(m) = 2.8 mM; k(cat) = 2.23 s(-1)). However, the substrates of known amidases such as short-chain (C(2) to C(4)) aliphatic amides, long-chain (above C(16)) aliphatic amides, amino acid amides, aliphatic diamides, alpha-keto acid amides, N-carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an M(r) of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.  相似文献   

5.
The cyclic-imide-hydrolyzing activity of a prokaryotic cyclic-ureide-hydrolyzing enzyme, D-hydantoinase, was investigated. The enzyme hydrolyzed cyclic imides with bulky substituents such as 2-methylsuccinimide, 2-phenylsuccinimide, phthalimide, and 3,4-pyridine dicarboximide to the corresponding half-amides. However, simple cyclic imides without substituents, which are substrates of imidase (ie.g., succinimide, glutarimide, and sulfur-containing cyclic imides such as 2,4-thiazolidinedione and rhodanine), were not hydrolyzed. The combined catalytic actions of bacterial D-hydantoinase and imidase can cover the function of a single mammalian enzyme, dihydropyrimidinase. Prokaryotic D-hydantoinase also catalyzed the dehyrative cyclization of the half-amide phthalamidic acid to the corresponding cyclic imide, phthalimide. The reversible hydrolysis of cyclic imides shown by prokaryotic D-hydantoinase suggested that, in addition to pyrimidine metabolism, it may also function in cyclic-imide metabolism.  相似文献   

6.
A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid (Km = 6.2 mM; kcat = 5.76 s−1) and glutaramic acid (Km = 2.8 mM; kcat = 2.23 s−1). However, the substrates of known amidases such as short-chain (C2 to C4) aliphatic amides, long-chain (above C16) aliphatic amides, amino acid amides, aliphatic diamides, α-keto acid amides, N-carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an Mr of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.  相似文献   

7.
-Amino acids have been widely used as synthetic materials for various compounds such as pharmaceuticals and agrochemicals. The manufacture of -amino acids by fermentation is difficult, and enzymatic methods are mainly employed. At present, the optical resolution method using N-acyl- -amino acid amidohydrolase is the most useful and convenient. In this review, the application of N-acyl- -amino acid amidohydrolase to the production of -amino acids and recent progress in the study of structure–function relationships from the standpoint of improving this enzyme for industrial application are discussed.  相似文献   

8.
N-acyl- -amino acid amidohydrolases can be classified into three types based on substrate specificity. -aminoacylase has been reported to occur in a very few bacteria such as Pseudomonas, Streptomyces, and Alcaligenes. N-acyl- -aspartate amidohydrolase ( -AAase) has been reported in only Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) while N-acyl- -glutamate amidohydrolase ( -AGase) has been isolated in two stains of Pseudomonas sp. 5f-1 and Alcaligenes A-6. The physiological roles of these enzymes in these microbes are not clear. They are individually characteristic in their substrate specificities, inducer profiles, inhibitors, isoelectric points, metal dependency, and some physicochemical properties. The primary structures of all the three types of N-acyl- -amino acid amidohydrolases from Alcaligenes A-6 were determined from their nucleotide sequences. Comparison of their primary structures revealed high homology (46–56%) between the different enzymes. The three enzymes showed 26–27% sequence homology with -aminoacylases from Bacillus stearothermophilus, porcine, and human. Chemical modification and site-directed mutagenesis identified the histidyl residues essential for catalysis. The Alcaligenes N-acyl- -amino acid amidohydrolases share significant sequence similarities with some members of the urease-related amidohydrolase superfamily proposed by Holm and Sander [L. Holm, C. Sander, Proteins: Structure, Function and Genetics 28 (1997) 72].  相似文献   

9.
–Mammalian brain contains 2 N-acylamino acid amidohydrolases resembling the respective kidney enzymes. The anatomical and subcellular distribution of the enzymes; the substrate specificities and interspecies activities of the partially purified amidohydrolases have been studied. A considerable proportion of the amidohydrolase activity of subcellular fractions was found to be associated with the paniculate matter. The increased activities of the particulate enzymes in the presence of Triton X-100 and chloroacetyl amino acid substrates suggest that significant amounts of the enzymes are in the bound or latent form.  相似文献   

10.
Optically pure chiral amino acids and their derivatives can be efficiently synthesised by the biocatalytic conversion of 5-substituted hydantoins in reactions catalysed by stereo-selective microbial enzymes: initially a hydantoinase catalyses the cleavage of the hydantoin producing an N-carbamyl amino acid. In certain bacteria where an N-carbamyl amino acid amidohydrolase (NCAAH) is present, the N-carbamyl amino acid intermediate is further converted to amino acid, ammonia and CO2. In this study we report on a novel Pseudomonas putida strain which exhibits high levels of hydantoin-converting activity, yielding -amino acid products including alanine, valine, and norleucine, with bioconversion yields between 60% and 100%. The preferred substrates are generally aliphatic, but not necessarily short chain, 5-alkylhydantoins. In characterizing the enzymes from this microorganism, we have found that the NCAAH has -selectivity, while the hydantoinase is non-stereoselective. In addition, resting cell reactions under varying conditions showed that the hydantoinase is highly active, and is not subject to substrate inhibition, or product inhibition by ammonia. The rate-limiting reaction appears to be the NCAAH-catalysed conversion of the intermediate. Metal-dependence studies suggest that the hydantoinase is dependent on the presence of magnesium and cobalt ions, and is strongly inhibited by the presence of copper ions. The relative paucity of -selective hydantoin-hydrolysing enzyme systems, together with the high level of hydantoinase activity and the unusual substrate selectivity of this P. putida isolate, suggest that is has significant potential in industrial applications.  相似文献   

11.
For the production of D-amino acids using stable N-carbamyl-D-amino acid amidohydrolase (DCase) in an immobilized form, the DCase gene of Agrobacterium sp. KNK712 was mutagenized to increase its enzymatic thermostability. In a search for thermostability-related amino acid sites besides the two known sites of DCase, i.e., the 57th and 203rd amino acids, the new mutant enzyme found, in which the 236th amino acid, valine, had been changed to alanine, showed a 10°C increase in thermostability. These known three thermostability-related amino acids were changed to other amino acids by the PCR technique, and it was proved that the thermostability of the DCase increased when the 57th amino acid of DCase, histidine, was changed to leucine, the 203rd amino acid, proline, to asparagine, glutamate, alanine, isoleucine, histidine, or threonine, and the 236th amino acid, valine, to threonine or serine, in addition to the known mutations.  相似文献   

12.
The immobilization of a multi-enzyme extract is an excellent method for multi-step biotransformations. This paper describes how a multi-enzyme extract from Agrobacterium radiobacter, rich in d-hydantoinase and N-carbamyl-d-amino acid amidohydrolase was immobilized on chitin for its application on the synthesis of p-hydroxyphenylglycine. The adsorption derivative showed a higher activity than the covalent one. Compared to the soluble multi-enzymatic extract, the adsorption derivative showed greater pH-stability in the pH range under study. Its optimum pH ranged from 7–8. Furthermore, it showed high activity at low temperature.  相似文献   

13.
We characterized recombinant d-hydantoin hydrolase (DHHase) and N-carbamoyl-d-amino acid amidohydrolase (DCHase) from Flavobacterium sp. AJ11199 and Pasteurella sp. AJ11221. The DHHases from these two strains showed a wide range of hydrolytic activity for various 5-monosubstituted d-hydantoin compounds, including a very high level activity for d-hydantoin compounds corresponding to d-aromatic amino acids such as d-tryptophan d-phenylalanine and d-tyrosine. The DCHases, in turn, were capable of catalyzing the hydrolysis of various N-carbamoyl-d-amino acids (NCD-A.A.) corresponding to d-aliphatic and d-aromatic amino acids. The combination of these enzymes was found to be applicable for the production of various d-amino acids.  相似文献   

14.
The gene coding for the thermostable d-hydantoinase from the thermophilic bacterium Bacillus stearothermophilus SD1 was cloned and its nucleotide sequence was completely determined. The d-hydantoinase protein showed considerable amino acid sequence homology (20–28%) with other hydantoinases and functionally related allantoinases and dihydroorotases. Strikingly the sequence of the enzyme from B. stearothermophilus SD1 exhibited greater than 89% identity with hydantoinases from thermophilic bacteria. Despite the extremely high amino acid homology among the hydantoinases from thermophiles, the C-terminal regions of the enzymes were completely different in both sequence and predicted secondary structure, implying that the C-terminal region plays an important role in determining the biochemical properties of the enzymes. Alignment of the sequence of the d-hydantoinase from B. stearothermophilus SD1 with those of other functionally related enzymes revealed four conserved regions, and five histidines and an acidic residue were found to be conserved, suggesting a close evolutionary relationship between all these enzymes. Received: 20 December 1996 / Accepted: 12 March 1997  相似文献   

15.
Microbial hydantoinases – industrial enzymes from the origin of life?   总被引:9,自引:0,他引:9  
Hydantoinases are valuable enzymes for the production of optically pure d- and l-amino acids. They catalyse the reversible hydrolytic ring cleavage of hydantoin or 5′-monosubstituted hydantoins and are therefore classified in the EC nomenclature as cyclic amidases (EC 3.5.2.). In the EC nomenclature, four different hydantoin-cleaving enzymes are described: dihydropyrimidinase (3.5.2.2), allantoinase (EC 3.5.2.5), carboxymethylhydantoinase (EC 3.5.2.4), and N-methylhydantoinase (EC 3.5.2.14). Beside these, other hydantoinases with known metabolic functions, such as imidase and carboxyethylhydantoinase and enzymes with unknown metabolic function, are described in the literature and have not yet been classified. An important question is whether the distinct hydantoinases, which are frequently classified as l-, d-, and non-selective hydantoinases depending on their substrate specificity and stereoselectivity, are related to each other. In order to investigate the evolutionary relationship, amino acid sequence data can be used for a phylogenetic analysis. Although most of these enzymes only share limited sequence homology (identity<15%) and therefore are only distantly related, it can be shown (i) that most of them are members of a broad set of amidases with similarities to ureases and build a protein superfamily, whereas ATP-dependent hydantoinases are not related, (ii) that the urease-related amidases have evolved divergently from a common ancestor and (iii) that they share a metal-binding motif consisting of conserved histidine residues. The difference in enantioselectivity used for the classification of hydantoinases on the basis of their biotechnological value does not reflect their evolutionary relationship, which is to a more diverse group of enzymes than was assumed earlier. This protein superfamily probably has its origin in the prebiotic conditions of the primitive earth. Received: 24 August 1998 / Received revision: 9 November 1998 / Accepted: 21 November 1998  相似文献   

16.
Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the β-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the β-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic β-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a β-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as β-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2.  相似文献   

17.
Two cyclic ureide compound-hydrolyzing enzymes were found in Blastohacter sp. A17p-4, and partially purified. One hydrolyzed 5-substituted hydantoins D-stereospecifically and had dihydropyrimidinase activity. The other was a novel enzyme which should be called an imidase. The imidase preferably hydrolyzed cyclic imide compounds such as glutarimide and succinimide more than cyclic ureide compounds, and produced monoamidated dicarboxylates.  相似文献   

18.
N-Carbamoyl-d-α-amino acid amidohydrolase (d-carbamoylase) was found to distinguish stereochemistry not only at the α-carbon but also at the β-carbon of N-carbamoyl-d-α-amino acids. The enzyme selectively acted on one of the four stereoisomers of N-carbamoyl-α,β-diastereomeric amino acids. This simultaneous recognition of two chiral centers by d-carbamoylase was useful for the fine stereoselective synthesis of α,β-diastereomeric amino acids such as threonine, isoleucine, 3,4-methylenedioxyphenylserine and β-methylphenylalanine. The stereoselectivity for the β-carbon was influenced by the pH of the reaction mixture and by the bulk of the substituent at the β-carbon. Received: 18 June 1999 / Received revision: 30 July 1999 / Accepted: 6 August 1999  相似文献   

19.
An N-carbamyl-L-amino acid amidohydrolase was purified from cells of Escherichia coli in which the gene for N-carbamyl-L-amino acid amidohydrolase of Pseudomonas sp. strain NS671 was expressed. The purified enzyme was homogeneous by the criterion of SDS–polyacrvlamide gel electrophoresis. The results of gel filtration chromatography and SDS–polyacrylamide gel electrophoresis suggested that the enzyme was a dimeric protein with 45-kDa identical subunits. The enzyme required Mn2+ ion (above 1 mM) for the activity. The optimal pH and temperature were 7.5 and around 40°C, respectively, with N-carbamyl-L-methionine as the substrate. The enzyme activity was inhibited by ATP and was iost completely with p-chloromercuribenzoate (1 mM). The enzyme was strictly L-specific and showed a broad substrate specificity for N-carbamyl-L-α-amino acids.  相似文献   

20.
Pseudomonas putida strain DSM 84 produces N-carbamyl-d-amino acids from the corresponding d-5-monosubstituted hydantoins. The sequence of the d-hydantoinase gene from this strain (GenBank accession number L24157) was used to develop a DNA probe of 122 base pairs (bp) that could detect d-hydantoinase genes in other bacterial genera by DNA and by colony hybridization. Under conditions tolerating 32% mismatch, the probe was specific for all strains that expressed d-hydantoinase activity. These include Pseudomonadaceae of all rRNA groups, and bacteria belonging to the genera Agrobacterium, Serratia, Corynebacterium, and Arthrobacter. Environmental sampling was simulated by screening a mixture of unknown microorganims from commercial inocula for the biodegradation of industrial, municipal and domestic wastes. The 122-bp probe was specific for microorganisms that subsequently demonstrated d-hydantoinase activity. Bacterial species from four different genera were detected, which were Pseudomonas, Klebsiella, Enterobacter, and Enterococcus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号