首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 We have cloned, from an oribatid mite, a gene homologous to the zerknült (zen) genes of insects and the Hox 3 genes of vertebrates. Hox genes specify cell fates in specific regions of the body in all metazoans studied and are expressed in antero-posteriorly restricted regions of the embryo. This is true of the vertebrate Hox 3 but not of the zen genes, the insect homologs, and it has been proposed that the zen genes have lost their Hox-like function in the ancestor of the insects. We studied expression of a mite Hox 3/zen homolog and found that it is expressed in a discrete antero-posterior region of the body with an anterior boundary coinciding with that of the chelicerate homolog of the Drosophila Hox gene, proboscipedia, and propose that its loss of Hox function in insects is due to functional redundancy due to this overlap with another Hox gene. Received: 23 April 1998 / Accepted: 25 August 1998  相似文献   

2.

Background

Hox genes are expressed in specific domains along the anterior posterior body axis and define the regional identity. In most animals these genes are organized in a single cluster in the genome and the order of the genes in the cluster is correlated with the anterior to posterior expression of the genes in the embryo. The conserved order of the various Hox gene orthologs in the cluster among most bilaterians implies that such a Hox cluster was present in their last common ancestor. Vertebrates are the only metazoans so far that have been shown to contain duplicated Hox clusters, while all other bilaterians seem to possess only a single cluster.

Results

We here show that at least three Hox genes of the spider Cupiennius salei are present as two copies in this spider. In addition to the previously described duplicated Ultrabithorax gene, we here present sequence and expression data of a second Deformed gene, and of two Sex comb reduced genes. In addition, we describe the sequence and expression of the Cupiennius proboscipedia gene. The spider Cupiennius salei is the first chelicerate for which orthologs of all ten classes of arthropod Hox genes have been described. The posterior expression boundary of all anterior Hox genes is at the tagma border of the prosoma and opisthosoma, while the posterior boundary of the posterior Hox genes is at the posterior end of the embryo.

Conclusion

The presence of at least three duplicated Hox genes points to a major duplication event in the lineage to this spider, perhaps even of the complete Hox cluster as has taken place in the lineage to the vertebrates. The combined data of all Cupiennius Hox genes reveal the existence of two distinct posterior expression boundaries that correspond to morphological tagmata boundaries.  相似文献   

3.
The Drosophila melanogaster genes zerknüllt (zen) and fushi tarazu (ftz) are members of the Hox gene family whose roles have changed significantly in the insect lineage and thus provide an opportunity to study the mechanisms underlying the functional evolution of Hox proteins. We have studied the expression of orthologs of zen (DpuHox3) and ftz (Dpuftz) in the crustacean Daphnia pulex (Branchiopoda), both of which show a dynamic expression pattern. DpuHox3 is expressed in a complex pattern in early embryogenesis, with the most anterior boundary of expression lying at the anterior limit of the second antennal segment as well as a ring of expression around the embryo. In later embryos, DpuHox3 expression is restricted to the mesoderm of mandibular limb buds. Dpuftz is first expressed in a ring around the embryo following the posterior limit of the mandibular segment. Later, Dpuftz is restricted to the posterior part of the mandibular segment. This is the first report of expression of a Hox3 ortholog in a crustacean, and together with Dpuftz data, the results presented here show that Hox3 and ftz have retained a Hox-like expression pattern in crustaceans. This is in accordance with the proposed model of Hox3 and ftz evolution in arthropods and allows a more precise pinpointing of the loss of ftz “Hox-like behaviour”: in the lineage between the Branchiopoda and the basal insect Thysanura.  相似文献   

4.
Unlike most Hox cluster genes, with their canonical role in anterior-posterior patterning of the embryo, the Hox3 orthologue of insects has diverged. Here, we investigate the zen orthologue in Oncopeltus fasciatus (Hemiptera:Heteroptera). As in other insects, the Of-zen gene is expressed extraembryonically, and RNA interference (RNAi) experiments demonstrate that it is functionally required in this domain for the proper occurrence of katatrepsis, the phase of embryonic movements by which the embryo emerges from the yolk and adjusts its orientation within the egg. After RNAi knockdown of Of-zen, katatrepsis does not occur, causing embryos to complete development inside out. However, not all aspects of expression and function are conserved compared to grasshopper, beetle, and fly orthologues. Of-zen is not expressed in the extraembryonic tissue until relatively late, suggesting it is not involved in tissue specification. Within the extraembryonic domain, Of-zen is expressed in the outer serosal membrane, but unlike orthologues, it is not detectable in the inner extraembryonic membrane, the amnion. Thus, the role of zen in the interaction of serosa, amnion, and embryo may differ between species. Of-zen is also expressed in the blastoderm, although this early expression shows no apparent correlation with defects seen by RNAi knockdown.  相似文献   

5.
In Metazoa, Hox genes control the identity of the body parts along the anteroposterior axis. In addition to this homeotic function, these genes are characterized by two conserved features: They are clustered in the genome, and they contain a particular sequence, the homeobox, encoding a DNA-binding domain. Analysis of Hox homeobox sequences suggests that the Hox cluster emerged early in Metazoa and then underwent gene duplication events. In arthropods, the Hox cluster contains eight genes with a homeotic function and two other Hox-like genes, zerknullt (zen)/Hox3 and fushi tarazu (ftz). In insects, these two genes have lost their homeotic function but have acquired new functions in embryogenesis. In contrast, in chelicerates, these genes are expressed in a Hox-like pattern, which suggests that they have conserved their ancestral homeotic function. We describe here the characterization of Diva, the homologue of ftz in the cirripede crustacean Sacculina carcini. Diva is located in the Hox cluster, in the same position as the ftz genes of insects, and is not expressed in a Hox-like pattern. Instead, it is expressed exclusively in the central nervous system. Such a neurogenic expression of ftz has been also described in insects. This study, which provides the first information about the Hoxcluster in Crustacea, reveals that it may not be much smaller than the insect cluster. Study of the Diva expression pattern suggests that the arthropod ftz gene has lost its ancestral homeotic function after the divergence of the Crustacea/Hexapoda clade from other arthropod clades. In contrast, the function of ftz during neurogenesis is well conserved in insects and crustaceans.  相似文献   

6.
Kim KH  Lee YS  Jeon HK  Park JK  Kim CB  Eom KS 《Biochemical genetics》2007,45(3-4):335-343
Hox genes are important in forming the anterior-posterior body axis pattern in the early developmental stage of animals. The conserved nature of the genomic organization of Hox genes is well known in diverse metazoans. To understand the Hox gene architecture in human-infecting Taenia tapeworms, we conducted a genomic survey of the Hox gene using degenerative polymerase chain reaction primers in Taenia asiatica. Six Hox gene orthologs from 276 clones were identified. Comparative analysis revealed that T. asiatica has six Hox orthologs, including two lab/Hox1, two Hox3, one Dfd/Hox4, and one Lox2/Lox4. The results suggest that Taenia Hox genes may have undergone independent gene duplication in two Hox paralogs. The failure to detect Post1/2 orthologs in T. asiatica may suggest that sequence divergence or the secondary loss of the posterior genes has occurred in the lineage leading to the cestode and trematode.  相似文献   

7.
Molecular developmental studies of fly and mouse embryos have shown that the identity of individual body segments is controlled by a suite of homeobox-containing genes called the Hox cluster. To examine the conservation of this patterning mechanism in other segmented phyla, we here describe four Hox gene homologs isolated from glossiphoniid leeches of the genusHelobdella.Based on sequence similarity and phylogenetic analysis, the leech genesLox7, Lox6, Lox20,andLox5are deemed to be orthologs of theDrosophilageneslab, Dfd, Scr,andAntp,respectively. Sequence similarities betweenLox5andAntpoutside the homeodomain and phylogenetic reconstructions suggest that the Antennapedia family of Hox genes (as defined by Bürglin, 1994) had already expanded to include at least two discreteAntpandUbx/abdAprecursors prior to the annelid/arthropod divergence.In situhybridization reveals that the fourLoxgenes described in this study are all expressed at high levels within the segmented portion of the central nervous system (CNS), with variable levels of expression in the segmental mesoderm. Little or no expression was seen in peripheral ectoderm or endoderm, or in the unsegmented head region (prostomium). EachLoxgene has a distinct anterior expression boundary within one of the four rostral segments, and the anterior-posterior (AP) order of these expression boundaries is identical to that reported for the orthologous Hox gene products in fly and mouse. This finding supports the idea that the process of AP axis differentiation is conserved among the higher metazoan phyla with respect to the regional expression of individual Hox genes along that axis. One unusual feature of leech Hox genes is the observation that some genes are only expressed during later development -- beginning at the time of terminal cell differentiation -- whereas others begin expression at a much earlier stage, and their RNA ceases to be detectable shortly after the onset of expression of the ‘late’ Hox genes. The functional significance of this temporal disparity is unknown, but it is noteworthy that only the two ‘early’ Hox genes display high levels of mesodermal expression.  相似文献   

8.
9.
Chelicerate Hox genes and the homology of arthropod segments   总被引:3,自引:0,他引:3  
Genes of the homeotic complex (HOM-C) in insects and vertebrates are required for the specification of segments along the antero-posterior axis. Multiple paralogues of the Hox genes in the horseshoe crab Limulus poliphemus have been used as evidence for HOM-C duplications in the Chelicerata. We addressed this possibility through a limited PCR survey to sample the homeoboxes of two spider species, Steatoda triangulosa and Achaearanea tepidariorum. The survey did not provide evidence for multiple Hox clusters although we have found apparent duplicate copies of proboscipedia ( pb ) and Deformed ( Dfd   ). In addition, we have cloned larger cDNA fragments of pb, zerknullt ( zen / Hox3 ) and Dfd. These fragments allowed the determination of mRNA distribution by in situ hybridization. Our results are similar to the previously published expression patterns of Hox genes from another spider and an oribatid mite. Previous studies compared spider/mite Hox gene expression patterns with those of insects and argued for a pattern of segmental homology based on the assumption that the co-linear anterior boundaries of the Hox domains can be used as markers. To test this assumption we performed a comparative analysis of the expression patterns for UBX/ABD-A in chelicerates, myriapods, crustaceans, and insects. We conclude that the anterior boundary can be and is changed considerably during arthropod evolution and, therefore, Hox expression patterns should not be used as the sole criterion for identifying homology in different classes of arthropods.  相似文献   

10.
11.
 During embryogenesis of the fruit fly, Drosophila melanogaster, the homeotic genes are required to specify proper cell fates along the anterior-posterior axis of the embryo. We cloned partial cDNAs of homologues of the Drosophila homeotic gene teashirt and five of the homeotic-complex (HOM-C) genes from the thysanuran insect, Thermobia domestica, and assayed their embryonic expression patterns. The HOM-C genes we examined were labial, Antennapedia, Ultrabithorax, abdominal-A and Abdominal-B. As the expression pattern of these HOM-C genes is largely conserved among insects and as Thermobia is a member of a phylogenetically basal order of insects, we were able to infer their ancestral expression patterns in insects. We compare the expression patterns of the Thermobia HOM-C genes with their expression in Drosophila and other insects and discuss the potential roles these genes may have played in insect evolution. Interestingly, the teashirt homologue shows greater variability between Thermobia and Drosophila than any of the HOM-C genes. In particular, teashirt is not expressed strongly in the Thermobia abdomen, unlike Drosophila teashirt. We propose that teashirt expression has expanded posteriorly in Drosophila and contributed to a homogenization of the Drosophila larval thorax and abdomen. Received: 23 July 1998 / Accepted: 1 November 1998  相似文献   

12.
A carp caudal cDNA of 1.3 kb was cloned after screening an early segmentation stage cDNA library with a probe produced by PCR using conserved homeobox sequences as primers and genomic DNA as template. The homeobox gene was called carp-cdxl. The gene appears highly similar to other vertebrate caudal homologs, especially the zebrafish gene cdx(Zf-cad). The possible relationship to homeobox genes within the Hox-C gene complexes is discussed. A weak expression of the gene, detected by in situ hybridization, was found shortly before gastrulation (at 25% epiboly) in cells likely to have a posterior fate. During gastrulation expression became stronger. At the early segmentation stage, cells of the neural keel in the area of the prospective spinal cord expressed the gene. During the progression of segmentation, expression retracted in a caudal direction. The tailbud expressed the gene throughout, but the somites lost expression shortly after their formation. Only the most lateral mesoderm cells maintained expression in the trunk area. Carp-cdxl was also expressed in the endoderm. At 24 h after fertilization the gene was only expressed in the tailbud. At 48 h, no expression could be detected. The expression pattern suggests a function for carp-cdxl in gastrulation and patterning along the anterior-posterior axis of the embryo.  相似文献   

13.
14.
15.
The developmental expression patterns of four genes, Hox 1.1, Hox 1.2, Hox 1.3 and Hox 3.1, were examined by in situ hybridization to serial embryonic sections. The three genes of the Hox 1 cluster, used in this study, map to adjacent positions along chromosome 6, whereas the Hox 3.1 gene maps to the Hox 3 cluster on chromosome 15. The anterior expression limits in segmented mesoderm varied among the four genes examined. Interestingly, a linear correlation exists between the position of the gene along the chromosome and the extent of anterior expression. Genes that are expressed more posterior are also more restricted in their expression in other mesoderm-derived tissues. The order of expression anterior to posterior was determined as: Hox 1.3, Hox 1.2, Hox 1.1 and Hox 3.1. Similarly, genes of the Drosophila Antennapedia and Bithorax complex specifying segment identity also exhibit anterior expression boundaries that correlate with gene position. The data suggest that Hox genes may specify positional information along the anterior-posterior axis during the formation of the body plan.  相似文献   

16.
Neuronal cell fates are specified by a hierarchy of events mediated by cell-intrinsic determinants and cell-cell interactions. The determination of cell fate can be subdivided into three general steps. First, cell fate is restricted by the cell's position in the animal. For example, neurons are specified along the anterior-posterior body axis through the action of the Hox genes lin-39, mab-5, and egl-5. Second, a decision is made to generate a particular cell type, such as the progenitor of a neurogenic lineage as opposed to that of an epidermal lineage. Among the genes that influence this decision is the proneural gene lin-32. Third, characteristics of a particular cell type are specified. For example, in a neurogenic lineage, a decision may be made to generate a specific neuron type such as a sensory or motor neuron. Genes that affect neuronal fate can act in different ways to influence the development of different types of neurons. © 1996 Wiley-Liss, Inc.  相似文献   

17.
A bacterial artificial chromosome (BAC) contig was constructed by chromosome walking, starting from the Hox genes of the silkworm, Bombyx mori. Bombyx orthologues of the labial (lab) and zerknült (zen) genes were newly identified. The size of the BAC contig containing the Hox gene cluster—except the lab and Hox 2 genes—was estimated to be more than 2 Mb. The Bombyx Hox cluster was mapped to linkage group (LG) 6. The lab gene was mapped on the same LG, but far apart from the cluster. Fluorescence in situ hybridization analysis confirmed that the major Hox gene cluster and lab were at different locations on the same chromosome in B. mori.Edited by M. Akam  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号