共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative trait loci for baseline erythroid traits 总被引:1,自引:0,他引:1
Luanne L. Peters Amy J. Lambert Weidong Zhang Gary A. Churchill Carlo Brugnara Orah S. Platt 《Mammalian genome》2006,17(4):298-309
A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait
locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline erythroid parameters
in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified multiple significant QTL for red blood cell
(RBC) count, hemoglobin (Hgb) and hematocrit (Hct) levels, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH),
and mean cell hemoglobin concentration (CHCM). We identified four RBC count QTL: Rbcq1 (Chr 1, peak LOD score at 62 cM,), Rbcq2 (Chr 4, 60 cM), Rbcq3 (Chr 11, 34 cM), and Rbcq4 (Chr 10, 60 cM). Three MCV QTL were identified: Mcvq1 (Chr 7, 30 cM), Mvcq2 (Chr 11, 6 cM), and Mcvq3 (Chr 10, 60 cM). Single significant loci for Hgb (Hgbq1, Chr 16, 32 cM), Hct (Hctq1, Chr 3, 42 cM), and MCH (Mchq1, Chr 10, 60 cM) were identified. The data support the existence of a common RBC/MCH/MCV locus on Chr 10. Two QTL for CHCM
(Chcmq1, Chr 2, 48 cM; Chcmq2, Chr 9, 44 cM) and an interaction between Chcmq2 with a locus on Chr 19 were identified. These analyses emphasize the genetic complexity underlying the regulation of erythroid
peripheral blood traits in normal populations and suggest that genes not previously recognized as significantly impacting
normal erythropoiesis exist. 相似文献
2.
Gokhan Hacisalihoglu Amy L. Burton Jeffery L. Gustin Selim Eker Safiye Asikli Elif Hakli Heybet Levent Ozturk Ismail Cakmak Atilla Yazici Kent O. Burkey James Orf A. Mark Settles 《植物学报(英文版)》2018,60(3):232-241
Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non‐renewable, essential macronutrient, and P deficiency limits soybean (Glycine max) yield and quality. To investigate the associations of seed traits in low‐ and high‐P environments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybean maintains sufficient P in seeds even in low‐P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in low‐P environments and one significant QTL found in the optimal‐P environment. Broad‐sense heritability estimates were 0.78 (individual seed weight), 0.90 (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions. 相似文献
3.
Simić D Mladenović Drinić S Zdunić Z Jambrović A Ledencan T Brkić J Brkić A Brkić I 《The Journal of heredity》2012,103(1):47-54
Detecting genes that influence biofortification traits in cereal grain could help increase the concentrations of bioavailable mineral elements in crops to solve the global mineral malnutrition problem. The aims of this study were to detect the quantitative trait loci (QTLs) for phosphorus (P), iron (Fe), zinc (Zn), and magnesium (Mg) concentrations in maize grain in a mapping population, as well as QTLs for bioavailable Fe, Zn, and Mg, by precalculating their respective ratios with P. Elemental analysis of grain samples was done by coupled plasma-optical emission spectrometry in 294 F(4) lines of a biparental population taken from field trials of over 3 years. The population was mapped using sets of 121 polymorphic markers. QTL analysis revealed 32 significant QTLs detected for 7 traits, of which some were colocalized. The Additive-dominant model revealed highly significant additive effects, suggesting that biofortification traits in maize are generally controlled by numerous small-effect QTLs. Three QTLs for Fe/P, Zn/P, and Mg/P were colocalized on chromosome 3, coinciding with simple sequence repeats marker bnlg1456, which resides in close proximity to previously identified phytase genes (ZM phys1 and phys2). Thus, we recommend the ratios as bioavailability traits in biofortification research. 相似文献
4.
The objectives of this study were to understand the genetic basis of morphological variation observed in the genus Citrus and its relatives and to identify genomic regions associated with certain morphological traits using genetic linkage mapping
and quantitative trait loci (QTLs) analysis with random amplified polymorphic DNA (RAPD) markers. First, a genetic linkage
map was constructed with RAPD markers obtained by screening 98 progeny plants from a {Citrus grandis × [C. paradisi × Poncirus trifoliata]} × {[(C. paradisi × P. trifoliata) × C. reticulata] × [(C. paradisi × Poncirus trifoliata) × C. sinensis]} intergeneric cross. The map contains 69 RAPD markers distributed into nine linkage groups. Then, 17 different morphological
traits, including six tree and two leaf characters of 98 progeny plants and six floral and three fruit characters of about
half of the same progeny plants were evaluated for 2 years and statistically analyzed for variation. Statistical analysis
of individual traits indicated that trunk diameter and growth, tree height, canopy width, tree vigor and growth, leaf length
and width, petal and anther numbers, petal length and width, length of pistil and style, fruit length and diameter, and fruit
segment number showed normal or close to normal distribution, suggesting that these traits may be inherited quantitatively.
Quantitative data from the morphological traits were analyzed to detect markers and putative QTLs associated with these traits
using interval mapping method. QTL analysis revealed 18 putative QTLs of LOD > 3.0 associated with 13 of the morphological
traits analyzed. The putative QTLs were distributed in several different linkage groups, and QTLs associated with similar
traits were mostly mapped to the same LG or similar locations in the linkage group, indicating that the same genomic region
is involved in the inheritance of some of the morphological traits. 相似文献
5.
B. Gutiérrez-Gil M. F. El-Zarei L. Alvarez Y. Bayón L. F. de la Fuente F. San Primitivo J.-J. Arranz 《Animal genetics》2009,40(4):423-434
Improvement of milk production traits in dairy sheep is required to increase the competitiveness of the industry and to maintain the production of high quality cheese in regions of Mediterranean countries with less favourable conditions. Additional improvement over classical selection could be reached if genes with significant effects on the relevant traits were specifically targeted by selection. However, so far, few studies have been undertaken to detect quantitative trait loci (QTL) in dairy sheep. In this study, we present a complete genome scan performed in a commercial population of Spanish Churra sheep to identify chromosomal regions associated with phenotypic variation observed in milk production traits. Eleven half-sib families, including a total of 1213 ewes, were analysed following a daughter design. Genome-wise multi-marker regression analysis revealed a genome-wise significant QTL for milk protein percentage on chromosome 3. Eight other regions, localized on chromosomes 1, 2, 20, 23 and 25, showed suggestive significant linkage associations with some of the analysed traits. To our knowledge, this study represents the first complete genome scan for milk production traits reported in dairy sheep. The experiment described here shows that analysis of commercial dairy sheep populations has the potential to increase our understanding of the genetic determinants of complex production-related traits. 相似文献
6.
Cotton plant architecture is an important characteristic influencing the suitability of specific cotton varieties in cultivation, fiber yield and quality. However, complex multigenic relationships and substantial genotype–environment interaction underlie plant architecture, and will hinder the efficient improvement of these traits in conventional cotton breeding programs. An enhanced understanding of the molecular-genetic regulation of plant morphological developmental can aid in the modification of agronomically relevant traits. In this study, an interspecific Gossypium hirsutum and Gossypium barbadense BC1 population was used to identify QTL associated with plant architectural traits. Twenty-six single QTL were identified for seven plant architecture traits. The phenotypic variation explained by an individual QTL ranged from 9.56% to 44.57%. In addition, 11 epistatic QTL for fruit branch angle (FBA), plant height (PH), main-stem leaf size (MLS), and fruiting branch internode length (FBI) explained 2.28–15.34% of the phenotypic variation in these traits. The majority of the interactions (60%) occurred between markers linked to QTL influencing the same traits. The QTL detected in this study are expected to be valuable in future breeding programs to develop cultivars exhibiting desirable cotton architecture. 相似文献
7.
Wu H Pratley J Ma W Haig T 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,107(8):1477-1481
Wheat (Triticum aestivum L.) has been examined for allelopathic potential against annual ryegrass (Lolium rigidum). The bioassay technique, 'equal-compartment-agar-method', was employed to evaluate seedling allelopathy in a doubled-haploid (DH) population derived from cv Sunco (weakly allelopathic) and cv Tasman (strongly allelopathic). A significant difference in allelopathic activity was found among the DH lines, which inhibited the root length of ryegrass across a range from 23.7 to 88.3%. The phenotypic data showed that wheat allelopathic activity was distributed normally within this DH population and a substantial transgressive segregation for seedling allelopathic activity was also found. Analysis of restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and microsatellite (SSRs) markers identified two major QTLs on chromosome 2B associated with wheat allelopathy. The linkage analysis of genetic markers and the QTLs may improve genetic gains for the allelopathic activity through marker-assisted selection in wheat breeding. The development of wheat allelopathic cultivars could reduce the over-reliance of weed control on synthetic herbicides.Communicated by J. Dvorak 相似文献
8.
Nina F Schulman Goutam Sahana Mogens S Lund Sirja M Viitala Johanna H Vilkki 《遗传、选种与进化》2008,40(2):195-214
A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments. 相似文献
9.
J Timothy Lightfoot Michael J Turner Daniel Pomp Steven R Kleeberger Larry J Leamy 《Physiological genomics》2008,32(3):401-408
The genomic locations and identities of the genes that regulate voluntary physical activity are presently unknown. The purpose of this study was to search for quantitative trait loci (QTL) that are linked with daily mouse running wheel distance, duration, and speed of exercise. F(2) animals (n = 310) derived from high active C57L/J and low active C3H/HeJ inbred strains were phenotyped for 21 days. After phenotyping, genotyping with a fully informative single-nucleotide polymorphism panel with an average intermarker interval of 13.7 cM was used. On all three activity indexes, sex and strain were significant factors, with the F(2) animals similar to the high active C57L/J mice in both daily exercise distance and duration of exercise. In the F(2) cohort, female mice ran significantly farther, longer, and faster than male mice. QTL analysis revealed no sex-specific QTL but at the 5% experimentwise significance level did identify one QTL for duration, one QTL for distance, and two QTL for speed. The QTL for duration (DUR13.1) and distance (DIST13.1) colocalized with the QTL for speed (SPD13.1). Each of these QTL accounted for approximately 6% of the phenotypic variance, whereas SPD9.1 (chromosome 9, 7 cM) accounted for 11.3% of the phenotypic variation. DUR13.1, DIST13.1, SPD13.1, and SPD9.1 were subsequently replicated by haplotype association mapping. The results of this study suggest a genetic basis of voluntary activity in mice and provide a foundation for future candidate gene studies. 相似文献
10.
The objective of the present study was to detect quantitative trait loci (QTL) for male reproductive traits in a half-sib family from a Bos indicus (Brahman) x Bos taurus (Hereford) sire. The sire was mated with MARC III (1/4 Hereford, 1/4 Angus, 1/4 Red Poll and 1/4 Pinzgauer) cows. Testicular traits were measured from 126 male offspring born in 1996 and castrated at 8.5 months. Traits analysed were concentration of follicle stimulating hormone in peripheral blood at castration (FSH), paired testicular weight (PTW) and paired testicular volume (PTV) adjusted for age of dam, calculated age at puberty (AGE), and body weight at castration (BYW). A putative QTL was observed for FSH on chromosome 5. The maximum F-statistic was detected at 70 cM from the beginning of the linkage group. Animals inheriting the Hereford allele had a 2.47-ng/ml higher concentration of FSH than those inheriting the Brahman allele. Evidence also suggests the existence of a putative QTL on chromosome 29 for PTW, PTV, AGE and BYW. The maximum F-statistic was detected at cM 44 from the beginning of the linkage group for PTW, PTV and AGE, and at cM 52 for BYW. Animals that inherited the Brahman allele at this chromosomal region had a 45-g heavier PTW, a 42-cm(3) greater PTV, a 39-day younger AGE and a 22.8-kg heavier BYW, compared with those inheriting the Hereford allele. This is the first report of QTL for male reproductive traits in cattle. 相似文献
11.
Adriana Sacco Antonio Di Matteo Nadia Lombardi Nikita Trotta Biancavaleria Punzo Angela Mari Amalia Barone 《Molecular breeding : new strategies in plant improvement》2013,31(1):217-222
Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble solids (degrees Brix; °Bx) in tomato fruit. The purpose of the present work was to pyramid into cultivated varieties the selected QTL for enhanced antioxidant and °Bx content. To better understand the genetic architecture of each QTL, the two ILs were crossed to the recurrent parent M82 (ILH7-3 and ILH12-4) and between them (ILH7-3+12-4). F1 hybrids (ILH7-3+12-4) were then selfed up to obtain F3 progenies in order to stabilize the favourable traits at the homozygous condition. Species-specific molecular markers were identified for each introgressed region and allowed us to select four F2 genotypes carrying both introgressions at the homozygous condition. The F3 double homozygous plants displayed AsA, total phenols and °Bx content significantly higher than M82. Therefore, they may represent suitable genetic material for breeding schemes aiming to increase antioxidant content in tomato fruit. 相似文献
12.
Quantitative trait loci for red blood cell traits in swine 总被引:4,自引:1,他引:3
Haematological traits are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of erythroid traits is sparse, especially in swine. To identify QTL for erythroid traits in the pig, haematocrit (HCT), haemoglobin (HB), erythrocyte counts (RBC) and mean corpuscular haemoglobin content (MCHC) were measured in 139 F2 pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana . The pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Forty-three single QTL controlling erythroid traits were identified on 16 chromosomes. Twelve of the QTL were significant at the genome-wide level while 31 were significant at a chromosome-wide level. Because erythroid traits varied with health and disease status, QTL influencing the erythroid phenotypes showed specific health/disease patterns. Regions on SSC5, 7, 8, 12 and 13 contained QTL for baseline erythroid traits, while the other QTL regions affected distinct stages of the disease model. Single QTL explained 9–17% of the phenotypic variance in the F2 animals. Related traits were partly under common genetic influence. Our analysis confirms that erythroid trait variation differs between Meishan and Pietrain breeds and that this variation is associated with multiple chromosomal regions. 相似文献
13.
14.
Patrick Woods Brian J Campbell Timothy J Nicodemus Edgar B Cahoon Jack L Mullen John K McKay 《Genetics》2021,219(2)
Understanding the genetic basis of complex traits is a fundamental goal of evolutionary genetics. Yet, the genetics controlling complex traits in many important species such as hemp (Cannabis sativa) remain poorly investigated. Because hemp’s change in legal status with the 2014 and 2018 U.S. Federal Farm Bills, interest in the genetics controlling its numerous agriculturally important traits has steadily increased. To better understand the genetics of agriculturally important traits in hemp, we developed an F2 population by crossing two phenotypically distinct hemp cultivars (Carmagnola and USO31). Using whole-genome sequencing, we mapped quantitative trait loci (QTL) associated with variation in numerous agronomic and biochemical traits. A total of 69 loci associated with agronomic (34) and biochemical (35) trait variation were identified. We found that most QTL co-localized, suggesting that the phenotypic distinctions between Carmagnola and USO31 are largely controlled by a small number of loci. We identified TINY and olivetol synthase as candidate genes underlying co-localized QTL clusters for agronomic and biochemical traits, respectively. We functionally validated the olivetol synthase candidate by expressing the alleles in yeast. Gas chromatography-mass spectrometry assays of extracts from these yeast colonies suggest that the USO31 olivetol synthase is functionally less active and potentially explains why USO31 produces lower cannabinoids compared to Carmagnola. Overall, our results help modernize the genomic understanding of complex traits in hemp. 相似文献
15.
Seed calcium content is an important quality attribute of specialty soybean [Glycine max (L.) Merr.] for soyfoods. However, analyzing seed for calcium content is time consuming and labor intensive. Knowing quantitative trait loci (QTL) for seed calcium will facilitate the development of elite cultivars with proper calcium content through marker-assisted selection (MAS). The objective of this study was to identify major QTL associated with calcium content in soybean seed. Calcium content was tested in 178 F(2:3) and 157 F(2:4) lines derived from the cross of SS-516 (low calcium) x Camp (high calcium). The F(2:3) lines were genotyped with 148 simple sequence repeat markers in a previous study on seed hardness, and the genotypic data were used in the QTL analysis of the current study. Four QTL designated as Ca1, Ca2, Ca3, and Ca4 on linkage groups (LGs) A2, I, and M were identified by both single-marker analysis and composite-interval mapping, and the QTL accounted for 10.7%, 16.3%, 14.9%, and 9.7% of calcium content variation, respectively. In addition, multiple-interval mapping analysis revealed a significant dominant-by-dominant interaction effect between Ca1 and Ca3, which accounted for 4.3% calcium content variation. These QTL will facilitate the implementation of MAS for calcium content in soybean-breeding programs. 相似文献
16.
Yadav RS Hash CT Bidinger FR Cavan GP Howarth CJ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2002,104(1):67-83
Drought stress during the reproductive stage is one of the most important environmental factors reducing the grain yield and
yield stability of pearl millet. A QTL mapping approach has been used in this study to understand the genetic and physiological
basis of drought tolerance in pearl millet and to provide a more-targeted approach to improving the drought tolerance and
yield of this crop in water-limited environments. The aim was to identify specific genomic regions associated with the enhanced
tolerance of pearl millet to drought stress during the flowering and grain-filling stages. Testcrosses of a set of mapping-population
progenies, derived from a cross of two inbred pollinators that differed in their response to drought, were evaluated in a
range of managed terminal drought-stress environments. A number of genomic regions were associated with drought tolerance
in terms of both grain yield and its components. For example, a QTL associated with grain yield per se and for the drought
tolerance of grain yield mapped on linkage group 2 and explained up to 23% of the phenotypic variation. Some of these QTLs
were common across stress environments whereas others were specific to only a particular stress environment. All the QTLs
that contributed to increased drought tolerance did so either through better than average maintenance (compared to non-stress
environments) of harvest index, or harvest index and biomass productivity. It is concluded that there is considerable potential
for marker-assisted backcross transfer of selected QTLs to the elite parent of the mapping population and for their general
use in the improvement of pearl millet productivity in water-limited environments.
Received: 15 November 2000 / Accepted: 12 April 2001 相似文献
17.
Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce 总被引:1,自引:0,他引:1
Sylvie Jenni Maria José Truco Richard W. Michelmore 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2013,126(12):3065-3079
Crisphead lettuce (Lactuca sativa L.) crops exhibit several economically important, physiological disorders when grown in high temperature conditions. These include tipburn, rib discoloration, premature bolting, ribbiness, and internal rib cracking. We evaluated seven physiological disorders and three agronomic traits segregating in a recombinant inbred line (RIL) population consisting of 152 F7 RILs derived from an intra-specific cross between two crisphead cultivars, L. sativa cv. Emperor x L. sativa cv. El Dorado; evaluations were carried out at each of two parental maturities in one planting and at one intermediate maturity in a second planting in each of 2 years for a total of six evaluations. A genetic map was developed using 449 polymorphic SNP markers; it comprises 807 cM in 20 linkage groups that covered 51 % of the nine lettuce chromosomes. Composite interval mapping revealed a total of 36 significant QTLs for eight out of the ten traits evaluated. Significant QTLs were distributed in 11 linkage groups on seven of the chromosomes and accounted for up to 83 % of the phenotypic variation observed. The three largest QTLs for rib discoloration, which accounted individually for 7–21 % of the variation, were clustered with stem length, two with ribbiness and one with head firmness. Three major clusters of QTLs revealed pleiotropic effects or tight linkage between tipburn incidence and severity, head type, stem length, head firmness and ribbiness. One QTL, qTPB5.2, was detected in multiple trials and described 38–70 % of the variation in tipburn incidence. qTPB5.2 is, therefore, a useful candidate gene for breeding for tipburn resistance using marker-assisted selection. 相似文献
18.
J Timothy Lightfoot Michael J Turner Amy Kleinfehn Knab Anne E Jedlicka Tomohiro Oshimura Jacqui Marzec Wesley Gladwell Larry J Leamy Steven R Kleeberger 《Journal of applied physiology》2007,103(1):105-110
The role of genetics in the determination of maximal exercise endurance is unclear. Six- to nine-week-old F2 mice (n = 99; 60 female, 39 male), derived from an intercross of two inbred strains that had previously been phenotyped as having high maximal exercise endurance (Balb/cJ) and low maximal exercise endurance (DBA/2J), were treadmill tested to estimate exercise endurance. Selective genotyping of the F2 cohort (n = 12 high exercise endurance; n = 12 low exercise endurance) identified a significant quantitative trait locus (QTL) on chromosome X (53.7 cM, DXMit121) in the entire cohort and a suggestive QTL on chromosome 8 (36.1 cM, D8Mit359) in the female mice. Fine mapping with the entire F2 cohort and additional informative markers confirmed and narrowed the QTLs. The chromosome 8 QTL (EE8(F)) is homologous with two suggestive human QTLs and one significant rat QTL previously linked with exercise endurance. No effect of sex (P = 0.33) or body weight (P = 0.79) on exercise endurance was found in the F2 cohort. These data indicate that genetic factors in distinct chromosomal regions may affect maximal exercise endurance in the inbred mouse. Whereas multiple genes are located in the identified QTL that could functionally affect exercise endurance, this study serves as a foundation for further investigations delineating the identity of genetic factors influencing maximum exercise endurance. 相似文献
19.
This study aimed to identify quantitative trait loci associated with endoparasitic infection in Scottish Blackface sheep. Data were collected from 789 animals over a 3-year period. All of the animals were continually exposed to a mixed nematode infection by grazing. Faecal samples were collected in August, September and October each year at ca. 16, 20 and 24 weeks of age; Nematodirus spp. eggs were counted separately from the other species of nematodes. Blood samples were collected in October from which immunoglobulin A (IgA) activity was measured and DNA was extracted for genotyping. In total, 139 Microsatellite markers were genotyped across eight chromosomal regions (chromosomes 1, 2, 3, 5, 14, 18, 20 and 21) in the sires and progeny were genotyped for the markers that were polymorphic in their sire. Evidence was found for quantitative trait loci (QTL) on chromosomes 2, 3, 14 and 20. QTL associated with specific IgA activity were identified in chromosomes 3 and 20, in regions close to IFNG (chromosome 3) and the MHC (chromosome 20). QTL associated with Nematodirus FEC were identified on chromosomes 2, 3 and 14. Lastly, QTL associated with non-Nematodirus Strongyle FEC were identified on chromosomes 3 and 20. This study has shown that some aspects of host resistance to gastrointestinal parasites are under strong genetic control, therefore these QTL could be utilised in a marker-assisted selection scheme to increase host resistance to gastrointestinal parasites. 相似文献
20.
Yoo SC Cho SH Zhang H Paik HC Lee CH Li J Yoo JH Lee BW Koh HJ Seo HS Paek NC 《Molecules and cells》2007,24(1):83-94
During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with F2 and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1. 相似文献