首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.  相似文献   

2.
Previous reports have shown that coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum, two important periodontopathogens, is mediated by a galactoside on the surface of P. gingivalis and a lectin on F. nucleatum. In the present study, purified capsular polysaccharide (CPS) and lipopolysaccharide (LPS) of P. gingivalis PK 1924 (serotype K5) were found to be able to bind to F. nucleatum cells and to inhibit binding of F. nucleatum to P. gingivalis serotype K5. Sugar binding studies showed that the requirements for binding of P. gingivalis serotype K5 CPS and LPS to the F. nucleatum lectin are: the presence of a metal divalent ion, an axial free hydroxyl group at position 4 and free equatorial hydroxyl groups at position 3 and 6 of d-galactose. These data suggest that P. gingivalis serotype K5- CPS and LPS act as receptors mediating coaggregation between P. gingivalis and fusobacteria.  相似文献   

3.
Fusobacterium nucleatum is a gram-negative anaerobe that is prevalent in periodontal disease and infections of different parts of the body. The organism has remarkable adherence properties, binding to partners ranging from eukaryotic and prokaryotic cells to extracellular macromolecules. Understanding its adherence is important for understanding the pathogenesis of F. nucleatum. In this study, a novel adhesin, FadA (Fusobacterium adhesin A), was demonstrated to bind to the surface proteins of the oral mucosal KB cells. FadA is composed of 129 amino acid (aa) residues, including an 18-aa signal peptide, with calculated molecular masses of 13.6 kDa for the intact form and 12.6 kDa for the secreted form. It is highly conserved among F. nucleatum, Fusobacterium periodonticum, and Fusobacterium simiae, the three most closely related oral species, but is absent in the nonoral species, including Fusobacterium gonidiaformans, Fusobacterium mortiferum, Fusobacterium naviforme, Fusobacterium russii, and Fusobacterium ulcerans. In addition to FadA, F. nucleatum ATCC 25586 and ATCC 49256 also encode two paralogues, FN1529 and FNV2159, each sharing 31% identity with FadA. A double-crossover fadA deletion mutant, F. nucleatum 12230-US1, was constructed by utilizing a novel sonoporation procedure. The mutant had a slightly slower growth rate, yet its binding to KB and Chinese hamster ovarian cells was reduced by 70 to 80% compared to that of the wild type, indicating that FadA plays an important role in fusobacterial colonization in the host. Furthermore, due to its uniqueness to oral Fusobacterium species, fadA may be used as a marker to detect orally related fusobacteria. F. nucleatum isolated from other parts of the body may originate from the oral cavity.  相似文献   

4.
Coaggregation is one of the potential colonization strategies of oral microorganisms, often involving fimbrial structures in the interactions. In this study, the coaggregation characteristics of the rough and smooth genotypes of the periodontal pathogen Peptostreptococcus micros were compared to investigate the role of the fibril-like structures of the rough genotype in coaggregation. Of the 11 oral species tested, only Fusobacterium nucleatum strains and non-encapsulated Porphyromonas gingivalis strains coaggregated with P. micros. No differences in coaggregation between the smooth type (Sm), the rough type (Rg) and the smooth variant of the Rg type (Rg(Sm)) of P. micros were observed. Heat-stable, periodate-sensitive structures on P. micros appeared to interact with heat- and protease-sensitive structures on F. nucleatum and P. gingivalis. These data indicate that these unimodal coaggregations are not mediated by the proteinaceous fibril-like structures of the Rg genotype, but by carbohydrates present on both genotypes of P. micros.  相似文献   

5.
Fusobacterium nucleatum is considered for its role in colonization of initial and late microorganisms in dental plaque and for its coaggregation with other bacterial species. It is known that action of different antimicrobial substances may interfere with either virulence factors or with host-bacteria interaction. The goal of this study was to examine the influence of subinhibitory concentrations of chlorhexidine, triclosan, penicillin G and metronidazole on hemolytic activity and bacteriocin-like substance production of oral F. nucleatum. A high resistance to penicillin G was observed and 63% of the isolates were beta-lactamase positive. All the tested isolates were susceptible to metronidazole. F. nucleatum isolates grown with or without antimicrobials were alpha-hemolytics. Bacteriocin-like substance production was increased in isolates grown with penicillin G. Impaired production of hemolytic or antagonic substances can suggest a role in the regulation of oral microbiota.  相似文献   

6.
Fusobacterium nucleatum is a Gram-negative anaerobe associated with various human infections, including periodontal diseases and preterm birth. A novel FadA adhesin was recently identified for host-cell binding. It consists of 129 amino acid residues, with an 18-amino acid signal peptide. Expression of FadA in Escherichia coli enhanced bacterial binding to host epithelial and endothelial cells. In both E. coli and F. nucleatum, FadA exists in two forms, the intact pre-FadA and the secreted mature FadA (mFadA), with pre-FadA anchored in the inner membrane and mFadA secreted outside the bacteria. Pre-FadA and mFadA formed high M(r) complexes. When each form was purified to a single species, mFadA was soluble at neutral pH, whereas pre-FadA was insoluble. Pre-FadA became soluble when mixed with mFadA or under acidic pH. When fluorescence-labeled mFadA alone was added to the epithelial cells, no binding was detected. However, when mixed with nonlabeled pre-FadA, binding and invasion of mFadA into epithelial cells was observed. FadA is a unique bacterial adhesin/invasin in that it utilizes its own two forms for both structural and functional purposes. The pre-FadA-mFadA complex is probably anchored in the inner membrane and protrudes through the outer membrane. Internalization of the pre-FadA-mFadA ensures invasion of the bacteria into the host cells.  相似文献   

7.
Fusobacterium nucleatum is an important oral anaerobic pathogen involved in periodontal and systemic infections. Studies of the molecular mechanisms involved in fusobacterial virulence and adhesion have been limited by lack of systems for efficient genetic manipulation. Plasmids were isolated from eight strains of F. nucleatum. The smallest plasmid, pKH9 (4,975 bp), was characterized and used to create new vectors for fusobacterial genetic manipulation. DNA sequence analysis of pKH9 revealed an open reading frame (ORF) encoding a putative autonomous rolling circle replication protein (Rep), an ORF predicted to encode a protein homologous to members of the FtsK/SpoIIIE cell division-DNA segregation protein family, and an operon encoding a putative toxin-antitoxin plasmid addiction system (txf-axf). Deletion analysis localized the pKH9 replication region in a 0.96-kbp fragment. The pKH9 rep gene is not present in this fragment, suggesting that pKH9 can replicate in fusobacteria independently of the Rep protein. A pKH9-based, compact Escherichia coli-F. nucleatum shuttle plasmid was constructed and found to be compatible with a previously described pFN1-based fusobacterial shuttle plasmid. Deletion of the pKH9 putative addiction system (txf-axf) reduced plasmid stability in fusobacteria, indicating its addiction properties and suggesting it to be the first plasmid addiction system described for fusobacteria. pKH9, its genetic elements, and its shuttle plasmid derivatives can serve as useful tools for investigating fusobacterial properties important in biofilm ecology and pathogenesis.  相似文献   

8.
Ji S  Shin JE  Kim YC  Choi Y 《Molecules and cells》2010,30(6):519-526
The role of Fusobacterium nucleatum in oral health and disease is controversial. We have previously shown that F. nucleatum invades gingival epithelial cells. However, the destiny of the internalized F. nucleatum is not clear. In the present study, the intracellular destiny of F. nucleatum and its cytopathic effect on gingival epithelial cells were studied. The ability of F. nucleatum and seven other oral bacterial species to invade immortalized human gingival epithelial (HOK-16B) cells were compared by confocal microscopy and flow cytometry. F. nucleatum had the highest invasive capacity, comparable to that of Porphyromonas gingivalis, a periodontal pathogen. Confocal microscopic examination revealed colocalization of internalized F. nucleatum with endosomes and lysosomes. Examination by transmission electron microscopy revealed that most intracellular F. nucleatum was located within vesicular structures with single enclosed membranes. Furthermore, F. nucleatum could not survive within gingival epithelial cells and had no cytopathic effects on host cells. Interestingly, endosomal maturation played a role in induction of the antimicrobial peptides human beta defensin (HBD)-2 and -3 by F. nucleatum from gingival epithelial cells. F. nucleatum is destined to enter an endocytic degradation pathway after invasion and has no cytopathic effect on gingival epithelial cells, which may cast new light on the role of F. nucleatum in the pathogenesis of periodontitis.  相似文献   

9.
Monoclonal antibodies that specifically inhibit coaggregation between Bacteroides loescheii PK1295 and its two gram-positive partners Streptococcus sanguis 34 and Actinomyces israelii PK14 were used to enumerate and localize two distinct types of fimbria-associated adhesins on the surface of B. loescheii. Binding studies with radiolabeled monoclonal antibodies indicated that a maximum (Bmax calculated from Scatchard plots) of approximately 400 adhesin molecules specific for S. sanguis and 310 adhesin molecules specific for A. israelii reside on the surface of the cell. Immunoelectron microscopy revealed that the adhesins were not an integral part of the fimbrial subunit; rather, they were usually found on the distal portion of the structures arranged in a random fashion.  相似文献   

10.
A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central 'bridging organisms' in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine-inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine-binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum . Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD ) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive 'early oral colonizers'. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation.  相似文献   

11.
ABSTRACT: BACKGROUND: The Gram negative anaerobe Fusobacterium nucleatum has been implicated in the aetiology of periodontal diseases. Although frequently isolated from healthy dental plaque, its numbers and proportion increase in plaque associated with disease. One of the significant physico-chemical changes in the diseased gingival sulcus is increased environmental pH. When grown under controlled conditions in our laboratory, F. nucleatum subspecies polymorphum formed mono-culture biofilms when cultured at pH 8.2. Biofilm formation is a survival strategy for bacteria, often associated with altered physiology and increased virulence. A proteomic approach was used to understand the phenotypic changes in F. nucleatum cells associated with alkaline induced biofilms. The proteomic based identification of significantly altered proteins was verified where possible using additional methods including quantitative real-time PCR (qRT-PCR), enzyme assay, acidic end-product analysis, intracellular polyglucose assay and Western blotting. RESULTS: Of 421 proteins detected on two-dimensional electrophoresis gels, spot densities of 54 proteins varied significantly (p < 0.05) in F. nucleatum cultured at pH 8.2 compared to growth at pH 7.4. Proteins that were differentially produced in biofilm cells were associated with the functional classes; metabolic enzymes, transport, stress response and hypothetical proteins. Our results suggest that biofilm cells were more metabolically efficient than planktonic cells as changes to amino acid and glucose metabolism generated additional energy needed for survival in a sub-optimal environment. The intracellular concentration of stress response proteins including heat shock protein GroEL and recombinational protein RecA increased markedly in the alkaline environment. A significant finding was the increased abundance of an adhesin, Fusobacterial outer membrane protein A (FomA). This surface protein is known for its capacity to bind to a vast number of bacterial species and human epithelial cells and its increased abundance was associated with biofilm formation. CONCLUSION: This investigation identified a number of proteins that were significantly altered by F. nucleatum in response to alkaline conditions similar to those reported in diseased periodontal pockets. The results provide insight into the adaptive mechanisms used by F. nucleatum biofilms in response to pH increase in the host environment.  相似文献   

12.
Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non‐fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753‐residue‐long protein with a predicted β‐helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino‐terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen‐associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non‐host plants, with a stronger activation by the carboxyl‐terminal region. Furthermore, pre‐infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control.  相似文献   

13.
Bacterial binding phenomena among different bacterial genera or species play an important role in bacterial colonization in a mixed microbiota such as in the human oral cavity. The coaggregation reaction between two gram-negative anaerobes, Treponema medium and Porphyromonas gingivalis, was characterized using fimbria-deficient mutants of P. gingivalis and specific antisera against purified fimbriae and bacterial whole cells. T. medium ATCC 700273 strongly coaggregated with fimbriate P. gingivalis strains ATCC 33277 and 381, but not with afimbriate strains including transposon-induced fimbria-deficient mutants and KDP98 as a fimA-disrupted mutant of P. gingivalis ATCC 33277. In the P. gingivalis-T. medium coaggregation assay, the presence of rabbit antiserum against the purified fimbriae or the whole cells of P. gingivalis ATCC 33277 produced different "aggregates" consisting predominantly of P. gingivalis cells with few spirochetes, but both preimmune serum and the antiserum against the afimbriate KDP98 cells did not inhibit the coaggregation reaction. Heated P. gingivalis cells lost their ability to bind both heated and unheated T. medium cells. This T. medium-P. gingivalis coaggregation reaction was inhibited by a cysteine proteinase inhibitor, leupeptin, and also by arginine and lysine, but not by EDTA or sugars including lactose. A binding assay on nitrocellulose membranes and immunoelectron microscopy demonstrated that a heat-stable 37 kDa surface protein on the T. medium cell attached to the P. gingivalis fimbriae.  相似文献   

14.
The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii, Porphyromonas gingivalis, or Fusobacterium nucleatum and dual-species biofilms of S. gordonii -- F. nucleatum and F. nucleatum -- P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis, Streptococcus mitis, Propionibacterium acnes, Actinomyces naeslundii, and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.  相似文献   

15.
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non‐pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin‐binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host‐pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.  相似文献   

16.
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.  相似文献   

17.
Coaggregation is believed to facilitate the integration of new bacterial species into polymicrobial communities. The aim of this study was to investigate coaggregation between and among human oral and enteric bacteria. Stationary phase cultures of 10 oral and 10 enteric species, chosen on the basis of numerical and ecological significance in their respective environments together with their ease of cultivation, were tested using a quantitative spectrophotometric coaggregation assay in all possible pairwise combinations to provide quantitative coaggregation scores. While 40% of possible partnerships coaggregated strongly for oral strains, strong interactions between oral and gut strains were considerably less common (4% incidence). Coaggregation scores were also weak between members of the intestinal microbiota (7% incidence), apart from Bacteroides fragilis with Clostridium perfringens, and Bifidobacterium adolescentis with C. perfringens. Oral and intestinal bacteria did not strongly interact, apart from B. adolescentis with Fusobacterium nucleatum, Actinomyces naeslundii with C. perfringens and F. nucleatum with Lactobacillus paracasei. Heating and sugar-addition experiments indicated that similar to oral microorganisms, interactions within intestinal bacteria and between intestinal and oral strains were mediated by lectin-carbohydrate interactions.  相似文献   

18.
Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.  相似文献   

19.
Coaggregation assays were performed to investigate interactions between oral Bifidobacterium adolescentis and other oral bacterial species. Bifidobacterium adolescentis OLB6410 isolated from the saliva of healthy humans did not coaggregate with Actinomyces naeslundii JCM8350, Streptococcus mitis OLS3293, Streptococcus sanguinis JCM5708, Veillonella parvula ATCC17745 or Porphyromonas gingivalis OB7124, but it did coaggregate with Fusobacterium nucleatum JCM8532. Subsequent examination of biofilm formation on saliva-coated hydroxyapatite discs using FISH revealed that B. adolescentis OLB6410 could not directly adhere to the coated discs. It did, however, adhere to biofilms of A. naeslundii, V. parvula, and F. nucleatum, although it did not coaggregate with A. naeslundii nor with V. parvula. These results suggest that the adhesion of B. adolescentis to tooth surfaces is mediated by other oral bacteria. Heat- or proteinase K-treated F. nucleatum could not coaggregate with B. adolescentis. Similarly, the coaggregation and coadhesion of proteinase K-treated B. adolescentis were strongly inhibited. It is therefore probable that proteinaceous factors on the cellular surface of B. adolescentis and F. nucleatum are involved in their interaction. The data presented in this study add to our understanding of bifidobacterial colonization in the human oral cavity.  相似文献   

20.
Fusobacterium nucleatum is a Gram-negative oral anaerobe, capable of systemic dissemination causing infections and abscesses, often in mixed-species, at different body sites. We have shown previously that F. nucleatum adheres to and invades host epithelial and endothelial cells via a novel FadA adhesin. In this study, vascular endothelial (VE)-cadherin, a member of the cadherin family and a cell-cell junction molecule, was identified as the endothelial receptor for FadA, required for F. nucleatum binding to the cells. FadA colocalized with VE-cadherin on endothelial cells, causing relocation of VE-cadherin away from the cell-cell junctions. As a result, the endothelial permeability was increased, allowing the bacteria to cross the endothelium through loosened junctions. This crossing mechanism may explain why the organism is able to disseminate systemically to colonize in different body sites and even overcome the placental and blood-brain barriers. Co-incubation of F. nucleatum and Escherichia coli enhanced penetration of the endothelial cells by the latter in the transwell assays, suggesting F. nucleatum may serve as an 'enabler' for other microorganisms to spread systemically. This may explain why F. nucleatum is often found in mixed infections. This study reveals a possible novel dissemination mechanism utilized by pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号