首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

2.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

3.
To gain insight into the mechanisms governing protein sorting, we have developed a system that reconstitutes both the formation of immature secretory granules and their fusion with the plasma membrane. Semi- intact PC12 cells were incubated with ATP and cytosol for 15 min to allow immature granules to form, and then in a buffer containing 30 microM [Ca2+]free to induce exocytosis. Transport via the regulated pathway, as assayed by the release of secretogranin II (SgII) labeled in the TGN, was inhibited by depletion of ATP, or by the inclusion of 100 microM GTP gamma S, 50 microM AlF3-5 or 5 micrograms/ml BFA. When added after immature granules had formed, GTP gamma S stimulated rather than inhibited exocytosis. Thus, exocytosis of immature granules in this system resembles the characteristics of fully matured granules. Transport of SgII via the regulated pathway occurred at a fourfold higher efficiency than glycosaminoglycan chains, indicating that SgII is sorted to some extent upon exit from the TGN. Addition of A23187 to release Ca2+ from the TGN had no significant effect on sorting of SgII into immature granules. In contrast, depletion of lumenal calcium inhibited the endoproteolytic cleavage of POMC and proinsulin. These results establish the importance of intra-cisternal Ca2+ in prohormone processing, but raise the question whether lumenal calcium is required for proper sorting of SgII into immature granules. Disruption of organelle pH gradients with an ionophore or a weak base resulted in the inhibition of transport via both the constitutive and the regulated pathways.  相似文献   

4.
Yoo SH  Chu SY  Kim KD  Huh YH 《Biochemistry》2007,46(50):14663-14671
Chromogranins and secretogranins have traditionally been known as marker proteins of secretory granules that contain the highest concentrations of cellular calcium, reaching approximately 40 mM. In addition, chromogranin B was also shown to exist in the nucleus, localizing in the putative inositol 1,4,5-trisphosphate (IP3)-sensitive nucleoplasmic Ca2+ store vesicles. Chromogranins A (CGA) and B (CGB) are high-capacity, low-affinity Ca2+ binding proteins, binding 30-90 mol of Ca2+/mol with dissociation constants (Kd) of 1.5-4 mM. Yet the Ca2+-binding property of secretogranins has not been studied. Here, we show the localization of secretogranin II (SgII) in the nucleus, more specifically, in the IP3-sensitive nucleoplasmic Ca2+ store vesicles along with CGB and the IP3 receptors. We have also determined the Ca2+-binding property of SgII and found that SgII binds 61 mol of Ca2+/mol (910 nmol Ca2+/mg) with a Kd of 3.0 mM at the intragranular pH 5.5 and 30 mol of Ca2+/mol (440 nmol Ca2+/mg) with a Kd of 2.2 mM at a near-physiological pH 7.5. Chromogranin B also bound 50 mol of Ca2+/mol (670 nmol Ca2+/mg) with a Kd of 3.1 mM at pH 7.5. Given the high-capacity, low-affinity Ca2+-binding property of SgII and its presence in the IP3-sensitive nucleoplasmic Ca2+ store vesicles, these results suggest that SgII may function in the storage and control of Ca2+ in the nucleus through its interaction with CGB in the nucleoplasmic vesicles.  相似文献   

5.
Characterization of secretogranin II (SgII) mRNA in various vertebrates has revealed selective conservation of the amino acid sequences of two regions of the protein, i.e., the bioactive peptide secretoneurin and a flanking novel peptide that we named EM66. To help elucidate the possible role of EM66, we examined the occurrence as well as the cellular and subcellular distribution of EM66 in rat pituitary and adrenal glands by using a polyclonal antibody raised against the recombinant human EM66 peptide. High-performance liquid chromatography (HPLC) analysis of rat pituitary and adrenal extracts combined with a radioimmunoassay resolved EM66-immunoreactive material exhibiting the same retention time as recombinant EM66. In the rat pituitary, double-labeling immunohistochemical (IHC) studies showed that EM66 immunoreactivity (IR) was present in gonadotrophs, lactotrophs, thyrotrophs, and melanotrophs, whereas corticotrophs were devoid of labeling. EM66-IR was also observed in nerve endings in the neural lobe. Immunocytochemical staining at the electron microscopic level revealed that EM66-IR is sequestered in the secretory granules within gonadotrophs and lactotrophs. In the adrenal medulla, double IHC labeling showed that EM66-IR occurs exclusively in epinephrine-synthesizing cells. At the ultrastructural level, EM66-IR was seen in chromaffin vesicles of adrenomedullary cells. These results demonstrate that post-translational processing of SgII generates a novel peptide that exhibits a cell-specific distribution in the rat pituitary and adrenal glands where it is stored in secretory granules, supporting the notion that EM66 may play a role in the endocrine system.  相似文献   

6.
We have investigated the sorting and packaging of secretory proteins into secretory granules by an immunological approach. An mAb against secretogranin I (chromogranin B), a secretory protein costored with various peptide hormones and neuropeptides in secretory granules of many endocrine cells and neurons, was expressed by microinjection of its mRNA into the secretogranin I-producing cell line PC12. An mAb against the G protein of vesicular stomatitis virus--i.e., against an antigen not present in PC12 cells--was expressed as a control. The intracellular localization and the secretion of the antibodies was studied by double-labeling immunofluorescence using the conventional and the confocal microscope, as well as by pulse-chase experiments. The secretogranin I antibody, like the control antibody, was transported along the secretory pathway to the Golgi complex. However, in contrast to the control antibody, which was secreted via the constitutive pathway, the secretogranin I antibody formed an immunocomplex with secretogranin I, was packaged into secretory granules, and was released by regulated exocytosis. Our results show that a constitutive secretory protein, unaltered by genetic engineering, can be diverted to the regulated pathway of secretion by its protein-protein interaction with a regulated secretory protein. The data also provide the basis for immunologically studying the role of luminally exposed protein domains in the biogenesis and function of regulated secretory vesicles.  相似文献   

7.
E Chanat  U Weiss  W B Huttner    S A Tooze 《The EMBO journal》1993,12(5):2159-2168
The role of the single, highly conserved disulfide bond in chromogranin B (secretogranin I) on the sorting of this regulated secretory protein to secretory granules was investigated in the neuroendocrine cell line PC12. Treatment of PC12 cells with dithiothreitol (DTT), a membrane permeable thiol reducing agent known to prevent disulfide bond formation in intact cells, resulted in the secretion of newly synthesized chromogranin B, but only slightly decreased the intracellular storage of newly synthesized secretogranin II, a regulated secretory protein devoid of cysteines. The secretion of newly synthesized chromogranin B in the presence of DTT occurred with similar kinetics to those of a heparan sulfate proteoglycan, a known marker of the constitutive secretory pathway in PC12 cells. Analysis of the various secretory vesicles derived from the trans-Golgi network (TGN) indicated that DTT treatment diverted newly synthesized chromogranin B to constitutive secretory vesicles, whereas the packaging of secretogranin II into immature secretory granules was unaffected by the reducing agent. The chromogranin B molecules diverted to constitutive secretory vesicles, in contrast to those stored in secretory granules, were found to contain free sulfhydryl residues. The effect of DTT on chromogranin B occurred in the TGN rather than in the endoplasmic reticulum. We conclude that the sorting of CgB in the TGN to secretory granules is dependent upon the integrity of its single disulfide bond.  相似文献   

8.
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.  相似文献   

9.
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.  相似文献   

10.
Secretogranin II (SgII) is one of the three major proteins, the other two being chromogranins A (CGA) and B (CGB), of secretory granules of neuroendocrine cells. The Ca(2+) storage proteins CGA and CGB not only are coupled to the IP(3) receptor (IP(3)R)/Ca(2+) channels that exist on the secretory granule membrane but also are known to play key roles in secretory granule biogenesis. Unlike the better studied CGA and CGB, secretogranin II has never been completely purified in the native state and studied. We have therefore purified SgII in native form from bovine adrenal medulla and subjected it to biochemical characterization. Secretogranin II consisted of largely beta-sheet and random coil structures with a low level of alpha-helicity. Like CGA and CGB, it also underwent pH-dependent conformational changes, showing 9.5% alpha-helicity at pH 7.5 and 17.0% alpha-helicity at pH 5.5. Secretogranin II also underwent acidic pH- and Ca(2+)-dependent aggregation, and it was approximately 8-fold more sensitive than CGA to Ca(2+) in its pH-dependent aggregation but was 8-fold less sensitive than CGB. Further, similar to CGA and CGB that had interacted with the secretory granule membrane at the intragranular pH 5.5, SgII also interacted with the secretory granule membrane at pH 5.5 and dissociated from it at near-physiological pH 7.5, implying similar roles of SgII in the cell as those of CGA and CGB. Secretogranin II hence appeared to actively participate in secretory granule biogenesis as has been proposed for CGA and CGB.  相似文献   

11.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

12.
Regulated secretory proteins are stored within specialized vesicles known as secretory granules. It is not known how proteins are sorted into these organelles. Regulated proteins may possess targeting signals which interact with specific sorting receptors in the lumen of the trans-Golgi network (TGN) prior to their aggregation to form the characteristic dense-core of the granule. Alternatively, sorting may occur as the result of specific aggregation of regulated proteins in the TGN. Aggregates may be directed to secretory granules by interaction of a targeting signal on the surface with a sorting receptor. Novel targeting signals which confer on regulated proteins a tendency to aggregate under certain conditions, and in so doing cause them to be incorporated into secretory granules, have been implicated. Specific targeting signals may also play a role in directing membrane proteins to secretory granules.  相似文献   

13.
The effects of brefeldin A (BFA) on membrane traffic between the trans-Golgi network (TGN) and the plasma membrane were investigated in intact PC12 cells and in a cell-free system derived from PC12 cells. In intact cells, BFA caused a virtually complete block of constitutive secretion, as indicated by the lack of release from, and accumulation in, the cells of a [35S]sulfate-labeled heparan sulfate proteoglycan (hsPG). Pulse-chase experiments with [35S]sulfate followed by subcellular fractionation showed that this block was due to the inhibition of formation of constitutive secretory vesicles (CSVs) from the TGN. BFA did not block the depolarization-induced release of [35S]sulfate-labeled chromogranin B (CgB) and secretogranin II (SgII) from secretory granules formed prior to the addition of the drug, showing that BFA does not block secretory granule fusion with the plasma membrane. The presence of BFA did, however, prevent the appearance of [35S]sulfate-labeled CgB and SgII in secretory granules, indicating that the drug inhibits the formation of secretory granules from the TGN. Evidence for a direct block of vesicle formation by BFA was obtained using a cell-free system derived from [35S]sulfate-labeled PC12 cells. In this system, low concentrations of BFA (5 micrograms/ml) inhibited the formation of the hsPG-containing CSVs and that of the SgII-containing secretory granules from the TGN to the same extent (50-60%) as, and in a non-additive manner with, the nonhydrolyzable GTP analogue GTP gamma S. Consistent with the inhibitory effects of BFA on vesicle formation from the TGN, BFA treatment of intact PC12 cells led to the hypersialylation of CgB, which presumably was due to the increased residence time of the protein in the TGN. In conclusion, our data are consistent with, and allow the generalization of, the concept that the BFA-induced block of anterograde membrane traffic results from the inhibition of vesicle formation from a donor compartment.  相似文献   

14.
Subcellular fractionation of bovine splenic nerves, which consist mainly of sympathetic nerve fibers, has been useful for characterizing cellular organelles en route to the terminal. In the present study we have characterized the subcellular distribution of both secretory and membrane proteins. A newly discovered chromogranin-like protein, NESP55, was found in large dense-core vesicles. The endogenous processing of NESP55 was comparable to that of chromogranins but more limited than that of secretogranin II and chromogranin B. For membrane proteins three major types of distribution were found. The amine carrier VMAT2 was confined to large dense-core vesicles. VAMP or synaptobrevin was present both in large dense-core vesicles and in lighter vesicles, whereas SNAP-25, syntaxin, and two types (N and L) of Ca2+ channels were found in a special population of lighter vesicles but were not present in large dense-core vesicles or at the most in very low concentrations. The plasma membrane norepinephrine transporter was apparently present in a separate type of vesicle, but this requires further study. These results further characterize vesicles en route to the terminal and establish for the first time that peptides involved in exocytosis (syntaxin, SNAP-25, and N- and L-type Ca2+ channels) are apparently transported to the terminal in a special type of vesicle. The exclusive presence of the amine carrier in large dense-core vesicles indicates that the formation of small dense-core vesicles in the terminals requires a reuse of membrane components of large dense-core vesicles.  相似文献   

15.
Recently, it was proposed that secretory vesicles have widely varying Ca(2+) thresholds for exocytosis. This model can explain adaptation of secretory responses and predicts that incomplete release is a consequence of insufficient Ca(2+). However, membrane capacitance-based measurements have not supported varying Ca(2+) thresholds. Here, Green Fluorescent Protein (GFP) imaging is used to test whether a Ca(2+) limitation determines the size of the releasable neuropeptide pool in differentiated PC12 cells. We show that depolarization-evoked release correlates with failure to sustain fully elevated [Ca(2+)](i). However, this is coincidental because release remains incomplete when [Ca(2+)](i) is maintained at a relatively high level by application of an ionophore or by dialysis with a buffered Ca(2+) solution. Furthermore, in contradiction with the existence of high threshold vesicles, stimulating maximal release with moderate [Ca(2+)](i) prevents secretory responses to large increases in [Ca(2+)](i) induced by photolysis of the caged dimethoxynitrophenyl-EGTA-4 (DMNPE-4). Thus, optical measurements show that limited capacity for neuropeptide release in response to depolarization is not caused by an insufficient duration of [Ca(2+)](i) elevation or by variation among vesicles in Ca(2+) sensitivity for exocytosis.  相似文献   

16.
The formation of secretory granules and regulated secretion are generally assumed to occur only in specialized endocrine, neuronal, or exocrine cells. We discovered that regulated secretory proteins such as the hormone precursors pro-vasopressin, pro-oxytocin, and pro-opiomelanocortin, as well as the granins secretogranin II and chromogranin B but not the constitutive secretory protein alpha(1)-protease inhibitor, accumulate in granular structures at the Golgi and in the cell periphery in transfected COS-1 fibroblast cells. The accumulations were observed in 30-70% of the transfected cells expressing the pro-hormones and for virtually all of the cells expressing the granins. Similar structures were also generated in other cell lines believed to be lacking a regulated secretory pathway. The accumulations resembled secretory granules morphologically in immunofluorescence and electron microscopy. They were devoid of markers of the endoplasmic reticulum, endosomes, and lysosomes but in part stained positive for the trans-Golgi network marker TGN46, consistent with their formation at the trans-Golgi network. When different regulated proteins were coexpressed, they were frequently found in the same granules, whereas alpha(1)-protease inhibitor could not be detected in accumulations formed by secretogranin II, demonstrating segregation of regulated from constitutive secretory proteins. In pulse-chase experiments, significant intracellular storage of secretogranin II and chromogranin B was observed and secretion of retained secretogranin II was stimulated with the calcium ionophore A23187. The results suggest that expression of regulated cargo proteins is sufficient to generate structures that resemble secretory granules in the background of constitutively secreting cells, supporting earlier proposals on the mechanism of granule formation.  相似文献   

17.
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.  相似文献   

18.
Exocytotic machinery in neuronal and endocrine tissues is sensitive to changes in intracellular Ca(2+) concentration. Endocrine cell models, that are most frequently used to study the mechanisms of regulated exocytosis, are pancreatic beta cells, adrenal chromaffin cells and pituitary cells. To reliably study the Ca(2+) sensitivity in endocrine cells, accurate and fast determination of Ca(2+) dependence in each tested cell is required. With slow photo-release it is possible to induce ramp-like increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that leads to a robust exocytotic activity. Slow increases in the [Ca(2+)](i) revealed exocytotic phases with different Ca(2+) sensitivities that have been largely masked in step-like flash photo-release experiments. Strikingly, in the cells of the three described model endocrine tissues (beta, chromaffin and melanotroph cells), distinct Ca(2+) sensitivity 'classes' of secretory vesicles have been observed: a highly Ca(2+)-sensitive, a medium Ca(2+)-sensitive and a low Ca(2+)-sensitive kinetic phase of secretory vesicle exocytosis. We discuss that a physiological modulation of a cellular activity, e.g. by activating cAMP/PKA transduction pathway, can switch the secretory vesicles between Ca(2+) sensitivity classes. This significantly alters late steps in the secretory release of hormones even without utilization of an additional Ca(2+) sensor protein.  相似文献   

19.
To investigate the constituents of the matrix of endocrine secretory granules, we analyzed endocrinoilogically silent ("non-functioning") human pituitary adenomas for the occurrence of the chromogranins/secretogranins (granins), a protein family normally stored together with many different hormones. When five non-functioning pituitary adenomas were analyzed by immunoblotting using polyclonal and monoclonal antibodies specific for individual members of the granin family, chromogranin A was detected in four cases and chromogranin B and secretogranin II were detected in all cases. The cellular distribution of the granins and of various hormones known to be expressed in the anterior pituitary was studied by immunocytochemistry in fixed, frozen tissue sections from five additional adenomas. Of the eight hormones investigated, only thyroid-stimulating hormone, luteinizing hormone, and follicle-stimulating hormone were detected, occurring in only two of the five adenomas. In contrast, granins were found in all five tumors. Chromogranin B and secretogranin II were detected in each of the adenomas in virtually every cell studied, whereas chromogranin A exhibited such a widespread cell distribution in only three adenomas, being focally present in one and absent from the other tumor. The subcellular localization of the granins and the three glycoprotein hormones was investigated by double immunoelectron microscopy. Chromogranin A and chromogranin B were mainly co-localized in secretory granules, whereas secretogranin II was either co-localized with the other two granins or segregated to different secretory granules. When present, glycoprotein hormones were immunodetected in both the secretory granules containing all three granins and those containing mainly secretogranin II. Our data indicate that in non-functioning pituitary adenomas chromogranin A is differentially expressed from chromogranin B and secretogranin II. Moreover, the granins appear to be the most widespread constituents of endocrine secretory granules known, forming the dense-core matrix irrespective of the presence or absence of hormones.  相似文献   

20.
Voets T 《Neuron》2000,28(2):537-545
In neurosecretory cells, intracellular Ca2+ ([Ca2+]i) not only acts as the trigger for secretion but also regulates earlier steps in the secretory pathway. Here, a novel approach was developed to control [Ca2+]i over a broad concentration range, which allowed the quantification of three distinct actions of [Ca2+]i on large dense-core vesicle (LDCV) fusion in chromaffin cells from mouse adrenal slices. Basal [Ca2+]i regulated the transfer of vesicles toward a slowly releasable state, whereas further maturation to the readily releasable state was Ca2+ independent. [Ca2+]i levels above 3 microM triggered exocytosis of all readily and slowly releasable vesicles in two parallel, kinetically distinct fusion reactions. In a molecular context, these results suggest that Ca2+ acts both before and after trans-SNARE complex formation to regulate fusion competence and fusion kinetics of LDCVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号