首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxigenic Vibrio cholerae, the cause of cholera, is a native flora of the aquatic environment which is transmitted through drinking water and still remains the leading cause of morbidity and mortality in many developing countries including Thailand. The culture method (CM), which is routinely used for assessing water quality, has not proven as efficient as molecular methods because the notorious pathogen survives in water mostly in a non-culturable state. We employed duplex-polymerase chain reaction (duplex-PCR) for detection of tcpA and ctxA genes in toxigenic V. cholerae, and compared PCR detection with CM in various waters of Khon Kaen Municipality, Thailand. We also evaluated the effect of different pre-PCR conditions on the results of ctxA and tcpA detection including: 1) water filtered and enriched in alkaline peptone water (APW) for 3 h before PCR, 2) water filtered without enrichment before PCR, and 3) use of only enrichment in APW for 6 h before PCR. Of the 96 water samples (taken from waste-water, potable and waste-water from patients' houses, and from rivers) tested, 48 (50%) were positive for ctxA and tcpA by duplex-PCR, whereas only 29 (30%) were positive for V. cholerae by CM. Of the 29 V. cholerae isolated by CM, 2 (7%) were toxigenic V. cholerae belonging to serovar O1, while the rests were non-O1/ non-O139. Results revealed, therefore, that ctxA and tcpA-targeted duplex PCR is more sensitive than CM for detection of toxigenic V. cholerae from water samples because CM detected much less toxigenic V. cholerae than the non-toxigenic V. cholerae. Template DNA as low as 100 fg or 23 cells of V. cholerae in the water sample was detected in duplex PCR. Pre-PCR filtration followed by enrichment for 3 h significantly increase in the efficiency of duplex-PCR detection of toxigenic V. cholerae.  相似文献   

2.
A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.  相似文献   

3.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

4.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

5.
A multiplex polymerase chain reaction (PCR) was developed to identify cholera toxin-producing Vibrio cholerae and to biotype V. cholerae O1. Enterotoxin-producing V. cholerae strains were identified with a primer pair that amplified a fragment of the ctxA2-B gene. Vibrio cholerae O1 strains were simultaneously differentiated into biotypes with three primers specified for the hlyA gene in the same reaction. The hlyA amplicon in the multiplex PCR serves as an internal control when testing toxin-producing strains, as hlyA gene sequences exist in all tested V. cholerae strains. Enrichment of V. cholerae present on oysters for 6 h in alkaline peptone water before detection by a nested PCR with internal primers for ctxA2-B gene yielded a detection limit lower than 3 colony-forming units (cfu) per gram of food.  相似文献   

6.
A multiplex PCR assay was developed for the detection of toxigenic and pathogenic V. cholerae from direct water sources using specific primers targeting diverse genes, viz. outer membrane protein (ompW), cholera toxin (ctxB), ORF specific for O1 (rfbG), zonula occludens (zot) and toxin co-regulated pilus (tcpB); among these genes, ompW acts as internal control for V. cholerae, the ctx gene as a marker for toxigenicity and tcp for pathogenicity. The sensitivity of multiplex PCR was 5 x 10(4) V. cholerae cells per reaction. The procedure was simplified as direct bacterial cells were used as template and there was no need for DNA extraction. The assay was specific as no amplification occurred with the other bacteria used. Toxigenic V. cholerae were artificially spiked in different water samples, filtered through a 0.45 microm membrane, and the filters containing bacteria were enriched in APW for 6 h. PCR following filtration and enrichment could detect as little as 8 V. cholerae cells per mL in different spiked water samples. Various environmental potable water samples were screened for the presence of V. cholerae using this assay procedure. The proposed method is rapid, sensitive and specific for environmental surveillance for the presence of toxigenic-pathogenic and nonpathogenic V. cholerae.  相似文献   

7.
多重实时PCR检测产毒素性霍乱弧菌和副溶血弧菌   总被引:3,自引:0,他引:3  
设计引物和探针,优化多重实时PCR条件,以同时检测霍乱弧菌霍乱毒素基因ctxA、副溶血弧菌种特异性基因gyrB和耐热肠毒素基因tdh。该多重实时PCR方法检测产毒素性的O1群(3株)和O139群(44株)霍乱弧菌菌株、不产毒素的O1群(12株)和O139群(6株)及非O1非O139群(7株)霍乱弧菌菌株的ctxA,阳性和阴性结果与普通PCR检测结果100%符合;检测副溶血弧菌种特异性gyrB,116株副溶血弧菌均阳性,而9株其它细菌和72株霍乱弧菌均阴性;检测tdh的阳性和阴性结果也与普通PCR结果完全一致。另外还建立了检测副溶血弧菌菌株trh1和trh2的单重实时PCR方法。  相似文献   

8.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

9.
Seawater and plankton samples were collected over a period of 17 months from November 1998 to March 2000 along the coast of Peru. Total DNA was extracted from water and from plankton grouped by size into two fractions (64 micro m to 202 micro m and >202 micro m). All samples were assayed for Vibrio cholerae, V. cholerae O1, V. cholerae O139, and ctxA by PCR. Of 50 samples collected and tested, 33 (66.0%) were positive for V. cholerae in at least one of the three fractions. Of these, 62.5% (n = 32) contained V. cholerae O1; ctxA was detected in 25% (n = 20) of the V. cholerae O1-positive samples. None were positive for V. cholerae O139. Thus, PCR was successfully employed in detecting toxigenic V. cholerae directly in seawater and plankton samples and provides evidence for an environmental reservoir for this pathogen in Peruvian coastal waters.  相似文献   

10.
A pit-stop semi-nested PCR assay for the detection of toxigenic Vibrio cholerae in environmental water samples was developed and its performance evaluated. The PCR technique amplifies sequences within the cholera toxin operon specific for toxigenic V. cholerae. The PCR procedure coupled with an enrichment culture detected as few as four V. cholerae organisms in pure culture. Treated sewage, surface, ground and drinking water samples were seeded with V. cholerae and following enrichment, a detection limit of as few as 1 V. cholerae cfu ml(-1) was obtained with amplification reactions from crude bacterial lysates. The proposed method, which includes a combination of enrichment, rapid sample preparation and a pit-stop semi-nested PCR, could be applicable in the rapid detection of toxigenic V. cholerae in environmental water samples.  相似文献   

11.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

12.
E Studer  U Candrian 《Biologicals》2000,28(3):149-154
Orochol, a live oral cholera vaccine licensed in Switzerland and in other countries, is based on the genetically modified Vibrio cholerae strain CVD103-HgR. This strain is derived from the wild-type O1 strain Inaba 569B by deletion of a fragment internal to the ctxA gene encoding the A1 subunit of cholera toxin and by replacement of an internal fragment of the hlyA gene with a fragment carrying the mer operon mediating mercury resistance. In this study we describe a polymerase chain reaction (PCR) system for the detection of wild-type Vibrio cholerae and the identification of the vaccine strain for the quality control of production batches. A multiplex PCR system that targets the intact ctxA gene of the wild-type strain and simultaneously the integration site of the mer operon in the hlyA gene (hlyA::mer) of the vaccine strain CVD103-HgR was developed. To evaluate the detection limit of the system, vaccine suspensions were artificially contaminated with wild-type V. cholerae 569B cells and tested by PCR. The detection limit of the system was statistically evaluated and found to be at 11625 wild-type cells per vaccine sachet (95% confidence limit). This number is below the infective dose of wild-type Vibrio cholerae. In Switzerland this test is used in combination with other tests in the official batch-release procedure to assure the safety of each batch of the cholera vaccine Orochol.  相似文献   

13.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   

14.
A multiplex nested PCR method for detection of Vibrio cholerae O1 using a single tube was developed (MSTNPCR). Firstly, single-tube nested PCR (STNPCR) with primers directed to ctxA gene was standardized, and its detection limit was compared to simple PCR and two-step nested PCR. Secondly, primers directed to rfbN gene were added to the reaction. The detection limit of the multiplex reaction was determined using V. cholerae O1 DNA and V. cholerae O1 grown in alkaline peptone water (APW). STNPCR was shown to be approximately 100-fold more sensitive than simple PCR and 10 times less sensitive than two-step nested PCR. This drawback is compensated by a lower risk of cross-contamination. The addition of a second target did not impair the detection limit of STNPCR (as little as 1 pg of V. cholerae O1 DNA detected). MSTNPCR could specifically detect up to three V. cholerae O1 cells or colony forming units (cfu) directly from the APW growth. A diagnostic kit consisting of a set of microtubes having the inner primers fixed onto the inside of the tube cap and a set of tubes containing the reaction mixture was evaluated for stability, and it proved to be stable for five months at -20 degrees C. Therefore, MSTNPCR would be useful in the detection of V. cholerae O1 directly from environmental waters in cholera endemic areas and in complementing the identification of toxigenic strains isolated by culture.  相似文献   

15.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

16.
Multiplex real-time PCR detection of Vibrio cholerae   总被引:10,自引:0,他引:10  
Cholera is an important enteric disease, which is endemic to different regions of the world and has historically been the cause of severe pandemics. Vibrio cholerae is a natural inhabitant of the aquatic environment and the toxigenic strains are causative agents of potentially life-threatening diarrhoea. A multiplex, real-time detection assay was developed targeting four genes characteristic of potentially toxigenic strains of V. cholerae, encoding: repeat in toxin (rtxA), extracellular secretory protein (epsM), mannose-sensitive pili (mshA) and the toxin coregulated pilus (tcpA). The assay was developed on the Cepheid Smart Cycler using SYBR Green I for detection and the products were differentiated based on melting temperature (Tm) analysis. Validation of the assay was achieved by testing against a range of Vibrio and non-Vibrio species. The detection limit of the assay was determined to be 10(3) CFU using cells from pure culture. This assay was also successful at detecting V. cholerae directly from spiked environmental water samples in the order of 10(4) CFU, except from sea water which inhibited the assay. The incorporation of a simple DNA purification step prior to the addition to the PCR increased the sensitivity 10 fold to 10(3) CFU. This multiplex real-time PCR assay allows for a more reliable, rapid detection and identification of V. cholerae which is considerably faster than current conventional detection assays.  相似文献   

17.
Toxigenic and nontoxigenic strains of Vibrio cholerae 01 occur in the natural aquatic environment. It is not clear whether V. cholerae 01 lose toxigenicity and become nontoxigenic during survival in the aquatic environment as a result of the effect of various biophysicochemical conditions (e.g., sunlight, pH, temperature, competition with other bacteria for nutrients, etc.). Five toxigenic strains were exposed to artificial aquatic environments in the presence of a filamentous green alga. Rhizoclonium fontanum, and recovered after different time intervals (0 and 0.5 h, 3, 6, 9, and 15 days). This experimental system was exposed to sunlight and the V. cholerae 01 were in competition for nutrients with resident bacterial flora from R. fontanum. The toxigenicity of Vibrio cholerae 01 that were recovered at different time intervals was assessed by tissue culture assay using Vero cells. The toxigenicity of recovered strains was compared with that of the parent strains. The results demonstrated that toxigenic V. cholerae 01 are unlikely to lose their toxigenicity in aquatic environments as a result of the effects of various biophysicochemical conditions. These results are consistent with the hypothesis of environmental reservoirs of V. cholerae.  相似文献   

18.
霍乱弧菌和副溶血弧菌分离株的gyrB基因系统发育分析   总被引:1,自引:0,他引:1  
依据gyrB基因部分编码序列构建系统发育树以分类和鉴别霍乱弧菌和副溶血弧菌,并探讨其种系发生关系。扩增并测序13株霍乱弧菌、8株副溶血弧菌、2株嗜水气单胞菌及1株类志贺邻单胞菌的gyrB基因(编码DNA促旋酶B亚单位)序列,并采用距离法与最大似然法构建系统发育树。两种方法所构建的树结构完全一致,霍乱弧菌、副溶血弧菌、嗜水气单胞菌及类志贺邻单胞菌各自形成一个独立的簇。其中,霍乱肠毒素基因(ctxA)阳性的霍乱弧菌(8株O139群与2株O1群ElTor型)聚类成一分枝;3株副溶血弧菌临床株(1株2002年流行株,2株2004年分离株)与1日本菌株及2001年1株自环境分离的毒力株聚类。系统发育分析靶分子gyrB基因可以良好区分上述4种常见病原菌。产毒O139群霍乱弧菌与产毒O1群ElTor型霍乱弧菌关系密切。副溶血弧菌环境毒力株与本地区临床主要流行株在系统发育关系上较为接近,可能是潜在的致病菌。  相似文献   

19.
The members of the genus Vibrio include harmless aquatic strains as well as strains capable of causing epidemics of cholera. Diarrhoea caused by Vibrio cholerae is attributed to cholerae enterotoxin (CT) codified by the ctx operon and regulated by a number of virulence genes such as toxT, toxR and toxS. Fifty-two Vibrio strains were isolated from different aquatic environments in and around Sardinia and searched by PCR for the presence of ctxA, zot, ace, toxR, toxS, toxT, tcpA and vpi virulence genes in the genomes of the isolates. The toxR operon was found in 27 Vibrio alginolyticus strains out of 42 analysed, in three out of four V. cholerae non-O1 strains and in three Vibrio parahaemolyticus isolates. A positive amplification for the virulence pathogenic island (vpi) was produced by five V. alginolyticus strains. Finally, the ace expected amplification fragment was found in two V. alginolyticus isolates whereas the amplification with zot primers produced the expected fragment in one V. alginolyticus isolate. Differentiation of these strains with a PCR fingerprinting technique revealed no association between the presence of virulence genes and a particular fingerprinting pattern. Although most Vibrio species are considered non-pathogenic or only potentially harmful to humans, the finding of V. cholerae virulence genes in other members of the genus Vibrio, and the recent reports of the creation and evolution of pandemic strains of V. cholerae, may give a new perspective to the significance of these results.  相似文献   

20.
Abstract The extent of contamination of a freshwater lake with Vibrio cholerae 0139 Bengal and the toxigenicity of all the V. cholerae isolates recovered during the period of the study were examined during and after an explosive outbreak of 0139 cholera in Calcutta. Strains biochemically characterized as V. cholerae could be isolated throughout the period of study examined from the freshwater lake samples. Most probable number of V. cholerae belonging to the 0139 serogroup in surface waters was 3 to 4 per 100 ml during major part of the study but isolation of this serogroup from sediment and plankton samples was infrequent. Of the total of 150 strains recovered, 23 (15.3%) agglutinated with the 0139 antiserum while the remaining belonged to the non-O1 non-O139 serogroups. None of the strains agglutinated with the O1 antiserum. All the 23 strains of V. cholerae O139 produced cholera toxin while 7.9% of the 127 non-O1 non-O139 strains also produced cholera toxin. Resistance to ampilicillin, furazolidone and streptomycin was encountered among strains belonging to both V. cholerae O139 and V. cholerae non-O1 non-O139 strains, but the percentage of resistant strains in the former was much higher than in the latter. During this cholera epidemic, possibly due to the introduction of large numbers of toxigenic V. cholerae such as the O139 serogroup, there was an increase in the number of toxigenic vibrios among the innocuous aquatic residents. This presumably occured through genetic exchange and, if substantiated, could play an important role in the re-emergence of epidemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号