首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been reported that it is difficult to express cationic antibacterial peptides in engineered bacteria because such peptides are highly toxic to the host bacteria cells and sensitive to intracellular proteases. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi and tumor cells, which may possibly be used as an antimicrobial agent. Here we tried to express ABP-CM4 in Escherichia coli cells using either the GST fusion system or the intein-mediated fusion expression system. In order to investigate the possible use of these two fusion partners in cationic small peptide expression and purification, a mutant ABP-CMt, which is a highly positively charged peptide with +9 charges at neutral pH, was designed. In the present study, we have shown that both ABP-CM4 and ABP-CMt peptides can be expressed and purified by the intein-mediated expression system but not by the GST fusion expression system. Thus the intein-mediated peptide expression and purification system potentially could be employed for the production of recombinant protease-sensitive and cytotoxic peptides.  相似文献   

2.
Membrane bioreactors can replace the activated sludge process and the final clarification step in municipal wastewater treatment. The combination of bioreactor and crossflow microfiltration allows for a high chemical oxygen demand (COD) reduction of synthetic wastewater. From biomass, grown at high production rates in the aerobic bioreactor, energy rich biogas can be obtained in a subsequent anaerobic bioreactor. In this paper, experimental data from a laboratory scale membrane bioreactor are presented. The degradation of synthetic wastewater at short hydraulic retention times down to 1.5 h has been studied. The organic loading rate (OLR) has been varied in the range of 6-13 kg m(-3) per day. At steady state a high quality filtrate could be obtained at different operating conditions. At biomass concentrations of 10-22 g l(-1), COD reduction was above 95%.  相似文献   

3.
Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. Aerobic granules disintegrate under high organic loading rates (OLR). This study cultivated aerobic granules using acetate as the sole carbon and energy source in three identical sequencing batch reactors operated under OLR of 9–21.3 kg chemical oxygen demand (COD) m−3 day−1. The cultivated granules removed 94–96% of fed COD at OLR up to 9–19.5 kg COD m−3 day−1, and disintegrated at OLR of 21.3 kg COD m−3 day−1. Most tested isolates did not grow in the medium at >3,000 mg COD l−1; additionally, these strains lost capability for auto-aggregation and protein or polysaccharide productivity. This critical COD regime correlates strongly with the OLR range in which granules started disintegrating. Reduced protein quantity secreted by isolates was associated with the noted poor granule integrity under high OLR. This work identified a potential cause of biological nature for aerobic granules breakdown.  相似文献   

4.
Ethanol production by a recombinant bacterium from wheat straw (WS) at high solid loading by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid pretreated WS (150 g/L) after enzymatic saccharification was 86.3 ± 1.5 g/L. The pretreated WS was bio-abated by growing a fungal strain aerobically in the liquid portion for 16 h. The recombinant Escherichia coli strain FBR5 produced 41.1 ± 1.1 g ethanol/L from non-abated WS hydrolyzate (total sugars, 86.6 ± 0.3 g/L) in 168 h at pH 7.0 and 35 °C. The bacterium produced 41.8 ± 0.0 g ethanol/L in 120 h from the bioabated WS by SHF. It produced 41.6 ± 0.7 g ethanol/L in 120 h from bioabated WS by fed-batch SSF. This is the first report of the production of above 4% ethanol from a lignocellulosic hydrolyzate by the recombinant bacterium.  相似文献   

5.
Functional bacterial consortiums that effectively tolerate high organic loading rates (OLR) were isolated using an organic shock-loading-to-extinction approach. The aerobic sludge granules were cultivated at low OLR and microbial community was challenged with stepwise increase in organic loadings to isolate functional consortiums. Strain Zoogloea resiniphila and at least two uncultured strains, Acinetobacter sp. clone JT2 and bacterium clone P1D1-516, formed the functional consortium of the aerobic granules present under a high OLR. The loss of these uncultured strains caused protein leakage from granules, thereby destabilizing the granules. The proposed organic shock-loading-to-extinction approach is effective in isolating the functional consortium from aerobic granules under high OLR.  相似文献   

6.
Apidaecins are 18–20-residue long proline-rich peptides expressed in insects as part of the innate immune system. They are very active against Gram-negative bacteria, especially Enterobacteriaceae. The C-terminal sequence PRPPHPRL is highly conserved, whereas the N-terminal region is variable. By replacing all 18 residues of apidaecin 1a and apidaecin 1b individually by alanine (Ala-scan), we have shown that single mutations in the C-terminal half of the peptides drastically reduced and mostly abolished the antibacterial activity against Escherichia coli. Conversely, substitutions in the N-terminal eight residues produced no, or only minor effects. The activity loss was correlated to the ability of apidaecin 1b and its mutants to enter Gram-negative bacteria, most likely because they no longer bind to a protein transporter. This assumed binding, however, was not inhibited by truncated apidaecin peptides added at tenfold higher concentrations. Interestingly, the antibacterial activity of full length apidaecin 1b was enhanced about four times by addition of a N-terminally truncated apidaecin peptide [11–18]-apidaecin 1b, as indicated by lower MIC-values against E. coli, although the short 5(6)-carboxyfluorescein-labeled peptide did not enter the bacteria. In contrast, the activity against the Gram-positive bacterium Micrococcus luteus was not located in the C-terminal sequence of apidaecins 1a and b, but depended mostly on the presence of all four basic residues.  相似文献   

7.
The antimicrobial peptide CM4 is a 35-residue cationic peptide. To explore a new approach for the expression and purification of CM4 in Escherichia coli, the CM4 gene was cloned into the vector pET32a to construct an expression vector pET32a-CM4. The fusion protein Trx-CM4, purified by Ni2+-chelating chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant CM4. Purification of recombinant CM4 was achieved by reverse HPLC chromatography, and about 1.4 mg/l active recombinant CM4 with the purity more than 98% was obtained. The recombinant CM4 showed antimicrobial activities that were similar to synthetic one. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

8.
E. coli is still one of the most commonly used hosts for protein production. However, when it is grown with excess glucose, acetate accumulation occurs. Elevated acetate concentrations have an inhibitory effect on growth rate and recombinant protein yield, and thus elimination of acetate formation is an important aim towards industrial production of recombinant proteins. Here we examine if over-expression of citrate synthase (gltA) or phosphoenolpyruvate carboxylase (ppc) can eliminate acetate production. Knock-out as well as over-expression mutants were constructed and characterized. Knocking out ppc or gltA decreased the maximum cell density by 14% and increased the acetate excretion by 7%, respectively decreased it by 10%. Over-expression of ppc or gltA increased the maximum cell dry weight by 91% and 23%, respectively. No acetate excretion was detected at these increased cell densities (35 and 23 g/l, respectively).  相似文献   

9.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

10.
Glycine betaine stimulates the growth rate of various bacteria in high osmolarity medium. In our studies, glycine betaine stimulated the growth rate of Escherichia coli K 12 in minimal medium with normal osmolarity at alkaline pH (pH 8.2). Betaine also caused a reduction in the intracellular pools of K+ and low molecular weight thiols in E. coli growing both in medium with high osmolarity and at alkaline pH. These effects of betaine were absent at pH 7.0. In cells growing in high osmolarity medium, 10 mM sodium acetate or 10 M N-ethylmaleimide reduced expression of the osmosensitive gene proU to the same extent as treatment with betaine; however, under these conditions, sodium acetate and N-ethylmaleimide did not stimulate the growth of E. coli. It is proposed that low molecular weight thiols and intracellular pH may participate in the response of E. coli to betaine.  相似文献   

11.
重组蛋白在大肠杆菌中表达时,往往面临着形成包涵体的问题,而重组蛋白若是分泌至周质空间则基本解决了这一问题,周质空间的周质蛋白不仅能帮助重组蛋白正确折叠还有利于二硫键的生成。信号肽是一段由15-30个氨基酸组成,被融合在重组蛋白N端的短肽,按照结构、功能的不同可以划分为N区、H区和C区,具有引导重组蛋白转运至细胞周质空间的作用。本文综述了信号肽的结构组成、作用机理和基本分泌途径,讨论了信号肽的高效转运和筛选方法,总结了在大肠杆菌中重组蛋白融合信号肽实现周质表达的新进展,并对未来高效信号肽选择方面的研究进行了探讨。  相似文献   

12.
Whole cells of Escherichia coli strains 0111, K12 and B as well as the ampicillin-resistant mutant K12 D21 and several lipopolysaccharide (LPS) mutants derived from this strain were analyzed for their molar LPS content per mg dry weight. An increase of the LPS concentration in some LPS mutants was substantiated by analyzing isolated cell walls and relating the molar LPS content to the murein subunit as measure of cell surface area. The increase of LPS was paralleled by increasing amounts of phospholipid while the overall protein content in the outer membrane decreased.According to the pattern of major outer membrane proteins in the various strains and the respective LPS structures, protein-LPS interactions are discussed as important requirements for outer membrane assembly and stability.Abbreviations LPS lipopolysaccharide - SDS sodium dodecyl-sulfate Dedicated to Dr. Otto Lüderitz on the occasion of his 60th birthday  相似文献   

13.
Li BC  Zhang SQ  Dan WB  Chen YQ  Cao P 《Biotechnology letters》2007,29(7):1031-1036
The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic α-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni2+-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K12D31, Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.  相似文献   

14.
Summary Escherichia coli bulk protein synthesis continued during the first 3–4 h of carbon starvation at 50–75% that of non-starved (growing) cells. Two-dimensional gel electrophoresis analysis of in vivo pulse-labelled proteins resolved at least 30 polypeptides with new or increased synthesis, relative to total protein synthesis, during this time. Among these polypeptides were several that were also synthesized by ethanol-treatedE. coli (heat-shock proteins). In addition, a number of unique polypeptides were synthesized by carbon-starved cells. These starvation proteins may be involved in survival of the starving bacteria.  相似文献   

15.
Summary TheEscherichia coli xylose isomerase (EC 5.3.1.5) has been expressed under the control of a thermal inverting promotor system (att-nutL-p-att-N block) and its performance in a hollow fiber bioreactor measured. The conversion of xylose to xylulose was inversely proportional to the flow rate and the system operated up to 60°C. The maximum conversion efficiency observed was 19.05% at 55°C.  相似文献   

16.
Summary Two kinds of fed batch fermentation processes were compared at a 10-liter scale to examine their effect on recombinant human insulin-like growth factor (IGF-1) gene expression inEscherichia coli. The difference between the two processes was the feed medium composition and whether the process used a single or dual feed during the course of the fermentation. In the dual feed system, organic nitrogen was delivered at a higher rate (50 g/h) than in the single feed system (5 g/h). The dual feed process resulted in a significant increase in IGF-1 yield. 30 mg IGF-1/g dry cell weight was synthesized in the dual feed system compared to 3 mg IGF-1/g dry cell weight obtained in the single feed system. The presence of high levels of organic nitrogen during the induction period may enhance IGF-1 synthesis by protecting the IGF-1 from proteolytic degradation. The IGF-1 yield decreased to 17 mg/g dry cell weight when the glucose supply was decreased from 17 g/h to 8 g/h during the induction period; however, an increase in glucose supply from 17 g/h to 50 g/h during the induction period did not enhance the IGF-1 synthesis. Thus, the enhancement of IGF-1 gene expression in the dual feed process was mainly dependent on a high level of organic nitrogen and an appropriate level of glucose in the medium during the induction period.  相似文献   

17.
18.
Summary A region of substantial homology, comprising 32 amino acids around a highly conserved glycine residue, is located near the C-terminal ends of the hydrophobic Fhu, Fec, Fep, Fat, and Btu transport proteins involved in the uptake of ferrisiderophores and vitamin B12 into Escherichia coli and Vibrio anguillarum. Furthermore, a region similar in location and sequence containing an invariant glycine at an equivalent position was identified in the hydrophobic component of all other periplasmic binding protein-dependent (PBT) systems. In the FhuB protein, which is twice the size of the other PBT-related inner membrane proteins and which displays an internal homology, two conserved glycine residues are present. Alteration of Gly at positions 226 and 559 to Ala, Val, or Glu reduced iron(III) hydroxamate uptake, suggesting that this homologous region may play a general role in the mechanism of PBT-dependent transport.  相似文献   

19.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

20.
In this work, the intein fusion approach was used for expression and purification of cathelicidin-like peptide SMAP-29 from Escherichia coli cultures. To overcome the high toxicity of the antimicrobial peptide against host cells, both C- and N-terminal fusions with Sce VMA intein were evaluated. The fusion of SMAP-29 with the N-terminus of intein had a dramatic lethal effect. In contrast, chimeric constructs harboring SMAP-29 linked to the C-terminus of intein displayed no significant inhibition of bacterial growth. Expression of intein-SMAP fusion protein was then induced in ER2566 E. coli strain by IPTG addition and different experimental conditions were tested in order to optimize the recovery of the soluble protein complex. Peptide purification was carried out by affinity chromatography: the chitin binding domain linked to intein was used to immobilize the chimeric protein on a chitin column and intein-mediated splicing of target peptide was obtained by thiol addition. Microbroth dilution assay showed that recombinant SMAP-29 displayed a high, dose-dependent bactericidal activity. These data demonstrate that the fusion of SMAP-29 with C-intein was able to inactivate the antimicrobial properties of the cathelicidin peptide allowing the expression of fusion protein in the host cell. The intein-mediated purification supplied an effective way to recover the fusion partner in its proper biologically active form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号