首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The fungus Aspergillus tamarii transforms progesterone to testololactone in high yield through a flexible four-step enzymatic pathway. To date no studies have investigated the effect of transposition of steroidal functionality between ring-A and ring-D in order to determine the effect on steroidal metabolism. A series of novel quasi reverse steroids (7-9) were synthesised through Linz and Schafer oxidation where 14-en-16-one functionality is generated on ring-D of the steroid. To retain parity with the normal series ring-D functionality was substituted onto ring-A of the analogues. All of the analogues (7-9) were handled through a minor 11beta-hydroxylation pathway with no lactones being formed. In previous studies testololactone is produced within the first 12 h of metabolism. A time course experiment demonstrated that the transformation of these steroids initiated with the formation of a 3beta-hydroxy group after which (48-96 h) hydroxylation through a minor pathway occurred, indicating that this hydroxylase was only then being induced. This is in contrast to the normal fungal metabolism of xenobiotic steroidal substrates where they are primarily hydroxylated. Furthermore, ring-D hydrogenation is reported for the first time as is reverse metabolism on this pathway. All metabolites were isolated by column chromatography and were identified by 1H and 13C NMR spectroscopy, DEPT analysis and other spectroscopic and crystallographic data.  相似文献   

2.
This paper demonstrates for the first time transformation of a series of 17-oxo steroidal substrates (epiandrosterone, dehydroepiandrosterone, androstenedione) by the most frequently used whole cell biocatalyst, Beauveria bassiana, to 11α-hydroxy-17a-oxa-d-homo-androst-17-one products, in the following sequence of reactions: 11α-hydroxylation and subsequent Baeyer-Villiger oxidation to a ring-D lactone. 11α-Hydroxyprogesterone, the product of the first stage of the progesterone metabolism, was further converted along two routes: hydroxylation to 6β,11α-dihydroxyprogesterone or 17β-acetyl chain degradation leading to 11α-hydroxytestosterone, the main metabolite of the substrate. Part of 11α-hydroxytestosterone underwent a rare reduction to 11α-hydroxy-5β-dihydrotestosterone. The experiments have demonstrated that the Baeyer-Villiger monooxygenase produced by the strain catalyzes solely oxidation of C-20 or C-17 ketones with 11α-hydroxyl group. 17-Oxo steroids, beside the 11α-hydroxylation and Baeyer-Villiger oxidation, also underwent reduction to 17β-alcohols; activity of 17β-hydroxysteroid dehydrogenase (17β-HSD) has significant impact on the amount of the formed ring-D δ-lactone.  相似文献   

3.
The fungus Aspergillus tamarii metabolizes progesterone to testololactone in high yield through a sequential four step enzymatic pathway which, has demonstrated flexibility in handling a range of steroidal probes. These substrates have revealed that subtle changes in the molecular structure of the steroid lead to significant changes in route of metabolism. It was therefore of interest to determine the metabolism of a range of 5-ene containing steroidal substrates. Remarkably the primary route of 5-ene steroid metabolism involved a 3β-hydroxy-steroid dehydrogenase/Δ5–Δ4 isomerase (3β-HSD/isomerase) enzyme(s), generating 3-one-4-ene functionality and identified for the first time in a fungus with the ability to handle both dehydroepiansdrosterone (DHEA) as well as C-17 side-chain containing compounds such as pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one. Uniquely in all the steroids tested, 3β-HSD/isomerase activity only occurred following lactonization of the steroidal ring-D. Presence of C-7 allylic hydroxylation, in either epimeric form, inhibited 3β-HSD/isomerase activity and of the substrates tested, was only observed with DHEA and its 13α-methyl analogue. In contrast to previous studies of fungi with 3β-HSD/isomerase activity DHEA could also enter a minor hydroxylation pathway. Pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one were metabolized solely through the putative 3β-HSD/isomerase pathway, indicating that a 17β-methyl ketone functionality inhibits allylic oxidation at C-7. The presence of the 3β-HSD/isomerase in A. tamarii and the transformation results obtained in this study highlight an important potential role that fungi may have in the generation of environmental androgens.  相似文献   

4.
Aspergillus tamarii contains an endogenous lactonization pathway which can transform progesterone to testololactone in high yield through a sequential four step enzymatic pathway. In this pathway testosterone is formed which primarily undergoes oxidation of the C-17β-alcohol to a C-17 ketone but, can also enter a minor hydroxylation pathway where 11β-hydroxytestosterone is produced. It was recently demonstrated that this hydroxylase could monohydroxylate 3β-hydroxy substituted saturated steroidal lactones in all four possible binding orientations (normal, reverse, inverted normal, inverted reverse) on rings B and C of the steroid nucleus. It was therefore of interest to determine the fate of a series of 3α-substituted steroidal analogues to determine stereochemical effect on transformation. Hydroxylation on the central rings was found to be restricted to the 11β-position (normal binding), indicating that the 3α-stereochemistry removes freedom of binding orientation within the hydroxylase. The only other hydroxylation observed was at the 1β-position. Interestingly the presence of this functional group did not prevent lactonization of the C-17 ketone. In contrast the presence of the 11β-hydroxyl completely inhibited Baeyer–Villiger oxidation, a result which again demonstrates that single functional groups can exert significant control over metabolic handling of steroids in this organism. This may also explain why lactonization of 11β-hydroxytestosterone does not occur. Lactonization of the C-17 ketone was not significantly affected by the 3α-alcohol with significant yields achieved (53%). Interestingly a time course experiment demonstrated that the presence of the 3α-acetate inhibited the Baeyer–Villiger monooxygenase with its activity being observed 24 h later than non-acetate containing analogues. Apart from oxidative transformations observed a minor reductive pathway was revealed with the C-17 ketone being reduced to a C-17β-alcohol for the first time in this organism.  相似文献   

5.
As a reference compound library for the investigation of biosynthesis of brassinosteroids, focused on a pathway from campesterol (1) to campestanol (2), 6-oxy functionalized campest-4-en-3-ones as well as campest-5-en-3-one (7) and campestane-3,6-dione were prepared from 1. Oxidation of 1 with pyridinium chlorochromate buffered by calcium carbonate gave 5-en-3-one (7) in 76% yield. Treatment of 7 with silica gel under an oxygen atmosphere in ethyl ether at room temperature produced efficient hydroperoxidation at the C-6 position to give 6alpha-hydroperoxycampest-4-en-3-one and 6beta-hydroperoxycampest-4-en-3-one in 34% and 49% yields, respectively. These compounds were converted to 6alpha-hydroxycampest-4-en-3-one and 6beta-hydroxycampest-4-en-3-one by reduction with triethyl phosphite. This provided the first example of the practical use of hydroperoxidation at C-6 of a Delta(5(6))-unsaturated 3-oxo-steroid with molecular oxygen and silica gel. On the other hand, oxidation of 1 with pyridinium chlorochromate in the absence of calcium carbonate gave campest-4-ene-3,6-dione in 64% yield. This compound was then converted in a highly stereoselective manner to campestane-3,6-dione with A/B trans ring junction by reduction with titanium (III) chloride in 85% yield.  相似文献   

6.
The fungus Corynespora cassiicola metabolises exogenous steroids in a unique and highly specific manner. Central to this, is the ability of this organism to functionalise substrates (androgens, progestogens) at the highly stereochemically hindered 8β-position of the steroid nucleus. A recent study has identified that 8β-hydroxylation occurs through inverted binding in a 9α-hydroxylase. In order to discern the metabolic fate of more symmetrical molecules, we have investigated the metabolism of a range of steroidal analogues functionalised with ring-D lactones, but differing in their functional group stereochemistry at carbon-3. Remarkably, the 3α-functionalised steroidal lactones underwent a mechanistically unique two step intramolecular cyclisation resulting in the generation of a ring-D spiro-carbolactone. This rapid rearrangement initiated with hydroxylation at carbon 14 followed by transesterification, resulting in ring contraction with formation of a butyrolactone at carbon-14. Remarkably this rearrangement was found to be highly dependent on the stereochemistry at carbon-3, with the β-analogues only undergoing 9α-hydroxylation. The implications of these findings and their mechanistic bases are discussed.  相似文献   

7.
Aspergillus tamarii KITA transforms progesterone in to testololactone in high yield through a sequential four-step enzymatic pathway which also has the flexibility to transform a range of steroidal substrates. This study has investigated the further metabolism of testololactone and a range of fully saturated steroidal lactone analogues. In contrast to testololactone, which even after 120 h incubation did not undergo further metabolism, the lactone analogues entered the minor hydroxylation pathway. Uniquely, after forming 3beta-hydroxy-17a-oxa-D-homo-5alpha-androstan-17-one (48 h) 4 distinct positions on the steroid skeleton were monohydroxylated (11beta, 6beta, 7beta, 11alpha) which geometrically relate to the four binding positions (normal, reverse, inverted normal and inverted reverse) possible within the steroidal hydroxylase(s). This is the first evidence demonstrating the four possible steroid/hydroxylase(s) binding interactions with a single molecule that has previously been hypothesized with a single organism. In addition a rare 1beta-monohydroxylation was observed, this may be indicative of dehydration generating 1-ene functionality in A. tamarii rather than dehydrogenation as reported in man and microorganisms. The importance of these findings in relation to steroid/hydroxylase binding interactions is discussed.  相似文献   

8.
Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer–Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted “normal” binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time.  相似文献   

9.
Substitution of a methylene group for the C-3 oxygen in androstenedione, testosterone, and the corresponding 19-hydroxy and 19-oxo derivatives results in a new category of inhibitors of estrogen biosynthesis by human placental microsomes. The inhibition is of the competitive type with the most effective inhibitors being the 17-ketonic compounds, 3-methyleneandrost-4-en-17-one, 19-hydroxy-3-methyleneandrost-4-en-17-one, and 3-methylene-19-oxoandrost-4-en-17-one with apparent Ki values of 4.7, 13, and 24 nM, respectively. The 3-methylene derivatives of androstenedione and 19-hydroxyandrostenedione were effective substrates for the placental microsomal 17 beta-hydroxy-steroid oxidoreductase but were only marginally hydroxylated at the C-19 position to the respective 19-hydroxy and 19-oxo derivatives. The 3-methylene analogs are thus competitive inhibitors of aromatization but are not substrates for this enzyme complex. Time-dependent inhibition of aromatization by 10 beta-difluoromethylestr-4-ene-3,17-dione and 10 beta-(2-propynyl)estr-4-ene,3,17-dione was abolished by substitution of a methylene function for the C-3 oxygen, suggesting that the presence of an oxygen at C-3 is required for an oxidative transformation at C-19, an initial step in aromatization. The essential role of the C-19 hydroxylation in aromatization is supported by the observation that the 3-methylene derivatives of 19-hydroxy- and 19-oxoandrostenedione showed time-dependent inhibition, but the corresponding 19-methyl compound did not. The 3-methylene androgens are potent inhibitors of placental aromatization but are themselves only marginal substrates for the enzyme. Their high affinity for and inertness to the placental aromatase complex makes them valuable probes of the aromatization process.  相似文献   

10.
With a view to preparing higher-carbon carbohydrates, crossed-aldol reactions of the methyl ketone 1-deoxy-3,4:5,6-di-O-isopropylidene-L-fructose with a representative series of aldehydes have been investigated, and the feasibility has been demonstrated of constructing a C-11 unit containing some of the key functionality found in the carbohydrate component of the herbicidins.  相似文献   

11.
The metabolic pathway leading to equilin and equilenin biosynthesis in the pregnant mare is different from that of estrone and estradiol and it is apparently cholesterol-independent. The precise precursors and intermediates and the stereomechanism of equine placental aromatization have not been established. [1,2-3H, 4-14C]3-Hydroxy-3,5,7-androstatrien-17-one was synthesized as a potential substrate and the 3H-distribution was analyzed by biochemical and chemical derivatization methods. The substrate was converted to equilin, equilenin and Heard's ketone by horse placental microsomes with a sp. act. of 74, 18 and 2.8 pmol/h/mg, respectively, and only to equilin by human placental microsomes with a rate of 26 pmol/h/mg. Analysis of the loss of 3H-labeling during aromatization showed the stereospecific 17 beta,2 beta-cis hydrogen elimination for equine estrogen biosynthesis both by horse and human placental microsomes. This is the same as for estrone and estradiol biosynthesis by both placentas. The biosynthesis of Heard's ketone, a non-phenolic ring-B aromatic C18 steroid, by horse placental microsomes was found to involve none of the four hydrogens at C-1 and C-2. This refutes the previous postulate that Heard's ketone arises from equilenin by reduction of the ring-A.  相似文献   

12.
The metabolism in the rat of 2,4-dibromo-17 beta-oestradiol (2,4-DBE2), a compound of potential use for tumour imaging and assessment, has been studied. 2,4-DB[6,7-3H]E2 was synthesized by bromination of [6,7-3H]E2 with N-bromosuccinimide, and administered (40 micrograms/kg, i.v.) to anaesthetized male and female rats. Metabolites were rapidly and extensively excreted in bile (60 and 82% of the dose over 1 and 6 h, respectively). No unchanged compound was excreted. 2,4-DBE2 was almost entirely oxidized to 2,4-DB-oestrone; which was largely eliminated as its glucuronide but partly (approx. 30%) metabolized to 2,4-DB-16 alpha-hhydroxyoesterone and, to a minor extent, 2,4-DB-oestriol. No products of either oxidative or reductive debromination were detected. Neither of the two oxidative transformations of 2,4-DBE2 in the rat, in contrast with those of exogenous E2, was sex-selective, and 2,4-DB-oestrone underwent less extensive hydroxylation than oestrone formed from E2. In female rats, the substituents selectively redirected the principal site of hydroxylation from C-2 to C-16, whereas in males they had no significant effect on the existing 16 alpha-hydroxylation but did block the major pathway, 15 alpha-hydroxylation. Thus the sexual differentiation of E2 oxidative metabolism was abolished by direct blockage causing metabolic switching to a latent reaction in the female rat and long-range inhibition of the vicinal hydroxylation in the male rat.  相似文献   

13.
Zou W  Shao H  Wu SH 《Carbohydrate research》2004,339(15):2475-2485
Whereas C-2- and 4-ulopyranosyl compounds (C-2- and C-4-ulosides) can be converted to cyclopentenones under base conditions through beta-elimination and ring contraction, base-initiated beta-elimination of C-glycosyl 2'-aldehydes and 2'-ketones results in the formation of acyclic alpha,beta-unsaturated aldehydes or ketones. By combining both molecular features we synthesized 1-C-(4-ulopyranosyl)-2-oxoalkanes 6, 13, and 20 and investigated their reactions when they were treated with base. Both alpha- and beta-anomers of C-(4-ulopyranosyl)acetaldehydes 6 and 13 underwent a fast intramolecular aldol reaction between the C-5 enolate and 2'-aldehyde to form optically pure 8-oxabicyclo[3.2.1]octanones, which further transformed to 8-oxabicyclo[3.2.1]octenones 14 and 15 by beta-elimination. However, this aldol reaction did not occur when 1-C-(4-ulopyranosyl)propan-2-one 20 was treated with base because of steric hindrance exerted by the additional methyl group. Instead, an alternate C-3 enolization led to beta-elimination and further electro-ring opening to form an acyclic enol, which was then converted through a disrotatory intramolecular aldol cyclization to a cis-substituted cyclopentenone 21.  相似文献   

14.
Biotransformation of ent-3beta,12alpha-dihydroxy-13-epi-manoyl oxide with Fusarium moniliforme gave the regioselective oxidation of the hydroxyl group at C-3 and the ent-7beta-hydroxylation. The action of Gliocladium roseum in the 3,12-diketoderivative originated monohydroxylations at C-1 and C-7, both by the ent-beta face, while Rhizopus nigricans produced hydroxylation at C-7 or C-18, epoxidation of the double bond, reduction of the keto group at C-3, and combined actions as biohydroxylation at C-2/epoxidation of the double bond and hydroxylation at C-7/reduction of the keto group at C-3. In the ent-3-hydroxy-12-keto epimers, G. roseum originated monohydroxylations at C-1 and C-7 and R. nigricans originated the oxidation at C-3 as a major transformation, epoxidation of double bond and hydroxylation at C-2. Finally, in the ent-3beta-hydroxy epimer R. nigricans also originated minor hydroxylations at C-1, C-6, C-7 and C-20 and F. moniliforme produced an hydroxylation at C-7 and a dihydroxylation at C-7/C-11.  相似文献   

15.
Sixteen new Cecropia juvenile hormone (JH) analogs with different alkyl substituents at C–7 and C–11 were synthesized as stereoisomeric mixtures. The epoxides with n-propyl or n-butyl and methyl groups at C-11 and methyl or ethyl group at C-7 showed high JH activity on Bombyx mori L. Structure-activity relationship of the JH analogs was discussed.  相似文献   

16.
The effect of C-2 substitution on the stereoselective reduction of steroid C-3 ketones with lithium tris-(R,S-1,2-dimethylpropyl)-borohydride and sodium borohydride was investigated. The C-2 mono- and di-substituted chloro and methyl derivatives were predominantly reduced to one of the epimeric alcohols. The 2 alpha-chloro and 2 alpha-methyl derivatives of 17 beta-acetoxy-5 alpha-androstan-3-one undergo stereoselective reduction with lithium tris-(R,S-1,2-dimethylpropyl)-borohydride to the axial (3 alpha) alcohol as observed in the unsubstituted compound, whereas sodium borohydride gives predominantly the equatorial (3 beta) alcohol. The 2 beta-chloro, 2 beta-methyl, 2,2-dichloro, and 2,2-dimethyl derivatives are reduced predominantly to the equatorial (3 beta) alcohol by both reagents.  相似文献   

17.
alpha-Ecdysone (2beta,3beta,14alpha,22R,25-pentahydroxy-5beta-cholest-7-en-6-one) has been identified as the metabolism product of 3beta,14alpha-dihydroxy-5beta-cholest-7-en-6-one in isolated prothoracic glands of the tobacco hornworm, Manduca sexta. In contrast, 3beta-hydroxy-5beta-cholest-7-en-6-one is metabolized to 14-deoxy-alpha-ecdysone and a variety of intermediates all lacking the 14-hydroxy group. The results suggest that either the normal precursor for the synthesis of alpha-ecdysone by prothoracic glands is a sterol more highly oxygenated than cholesterol or that hydroxylation of a minimally oxygenated precursor at C-14 must precede introduction of the C-6 ketone and/or delta7 bond. The data further suggest that several alternative hydroxylation routes may exist for the latter steps of alpha-ecdysone biosynthesis.  相似文献   

18.
Liu Y  Qu J  Yu S  Tang W  Liu J  Hu Y  Ma S 《Steroids》2008,73(2):184-192
Nine novel steroidal glycosides substituted with the orthoacetate groups, compounds 1-5 based on the aglycon of 12-O-acetyl-20-O-benzoyl-dihydrosarcostin 8,14,18-orthoacetate and compounds 6-9 based on the aglycon of 12-O-acetyl-20-O-benzoyl-dihydrosarcostin 14,17,18-orthoacetate, were isolated from Dregea sinensis var. corrugata. Their structures were deduced on the basis of chemical and spectral evidences. Compound 1 showed moderate anti-inflammatory activity.  相似文献   

19.
Rahier A 《Steroids》2011,76(4):340-352
Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase (3βHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3βHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.  相似文献   

20.
The sesquiterpenes cadina-4,10(15)-dien-3-one (1) and aromadendr-1(10)-en-9-one (squamulosone) (14) along with the triterpenoid methyl ursolate (21) were incubated with the fungus Mucor plumbeus ATCC 4740. Substrates 1, 14 and ursolic acid (20) were isolated from the plant Hyptis verticillata in large quantities. M. plumbeus hydroxylated 1 at C-12 and C-14. When the iron content of the medium was reduced, however, hydroxylation at these positions was also accompanied by epoxidation of the exocyclic double bond. In total nine new oxygenated cadinanes have been obtained. Sesquiterpene 14 was converted to the novel 2alpha,13-dihydroxy derivative along with four other metabolites. Methyl ursolate (21) was transformed to a new compound, methyl 3beta,7beta,21beta-trihydroxyursa-9(11),12-dien-28-oate (22). Two other triterpenoids, 3beta,28-dihydroxyurs-12-ene (uvaol) (23) and 3beta,28-bis(dimethylcarbamoxy)urs-12-ene (24) were not transformed by the micro-organism, however.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号