首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Significant differences were observed between the hamster and the rat in terms of the secretion of fluid and protein from submandibular glands in response to pilocarpine, phenylephrine and isoproterenol.2. In both the rat and the hamster the secretory responses induced by pilocarpine, phenylephrine and isoproterenol were inhibited by pretreatment with 4-DAMP, prazosin and metoprolol, respectively.3. These results suggest that the submandibular glands of the hamster and the rat have M3-cholino-receptors, as well as α1- and β1-adrenoceptors, and that these receptors play different roles in the secretion of fluid and protein from hamster and rat submandibular glands.  相似文献   

2.
The convoluted tubular cells of the male mouse submandibular gland contain many serous-like granules in their apical cytoplasm. The autonomic regulation of the secretory process of the contents of these granules was studied by the following two methods: (1) immunochemical method using an antiserum specific to the granular components; and (2) histometric observations using light and electron microscopes. The results obtained by these two methods were well in agreement. When male mice were administered either phenylephrine or norepinephrine, the amount of granules in the glands significantly decreased. These two adrenergic stimulators were very effective, whereas synephrine was less effective. When mice were injected with a beta-adrenergic agent(isoproterenol) or a parasympathomimetic agent (pilocarpine), the amount of granules in the glands did not change. The alpha-adrenergic blockers phenoxybenzamine and phentolamine almost completely neutralized the effect of alpha-adrenergic agents on the glands, whereas another alpha-blocker (ergotamine) was less effective. These facts suggest that the secretion of the granular components is mediated by way of alpha-adrenergic receptor sites in the glands.  相似文献   

3.
The influence of isoproterenol and pilocarpine on the in vitro incorporation of [3H]leucine and N-acetyl[14C]mannosamine into the proteins of the submandibular glands of the mouse has been investigated during a 10 h period. The total uptake of both labelled precursors into the glands was hardly affected by isoproterenol and pilocarpine during the first 2 h of incubation, thereafter both agonists decreased the uptake slightly. The incorporation of [3H]leucine into secreted proteins was largely similar for the control, isoproterenol and pilocarpine during an incubation of 10 h. [14C]ManNAc incorporation showed a lag period of about 2 h and could be observed in the secreted proteins after 2 h. Particularly after 6 h a strong increase was observed for the control and isoproterenol, whereas pilocarpine showed a much lower increase. The secreted protein components were separated by electrophoresis to study the incorporation of the labelled precursors in separate secretory proteins such as submandibular mucin. Apparently, both agonists increased the incorporation of [14C]ManNAc relative to [3H]leucine into submandibular mucin of the mouse. During a period of 10 h the [14C]ManNAc incorporation into the mucin was enhanced 2-3-fold by isoproterenol and 3-4-fold by pilocarpine. A non-radioactive experiment in vitro showed that the molar ratio of the sugar residues did not change. However, the total amount of sugars relative to the amino acids increased by 50%, pointing to an increase in the degree of glycosylation. This suggests that both adrenergic and cholinergic agonists regulate the total number of carbohydrate chains attached to one and the same polypeptide core of the submandibular mucin of the mouse.  相似文献   

4.
The influence of isoproterenol and pilocarpine on the in vitro incorporation of [3H]leucine and N-acetyl[14C]mannosamine into the proteins of the submandibular glands of the mouse has been investigated during a 10 h period. The total uptake of both labelled precursors into the glands was hardly affected by isoproterenol and pilocarpine during the first 2 h of incubation, thereafter both agonists decreased the uptake slightly. The incorporation of [3H]leucine into secreted proteins was largely similar for the control, isoproterenol and pilocarpine during an incubation of 10 h. [14C]ManNAc incorporation showed a lag period of about 2 h and could be observed in the secreted proteins after 2 h. Particularly after 6 h a strong increase was observed for the control and isoproterenol, whereas pilocarpine showed a much lower increase. The secreted protein components were separated by electrophoresis to study the incorporation of the labelled precursors in separate secretory proteins such as submandibular mucin. Apparently, both agonists increased the incorporation of [14C]ManNAc relative to [3H]leucine into submandibular mucin of the mouse. During a period of 10 h the [14C]ManNAc incorporation into the mucin was enhanced 2–3-fold by isoproterenol and 3–4-fold by pilocarpine. A non-radioactive experiment in vitro showed that the molar ratio of the sugar residues did not change. However, the total amount of sugars relative to the amino acids increased by 50%, pointing to an increase in the degree of glycosylation. This suggests that both adrenergic and cholinergic agonists regulate the total number of carbohydrate chains attached to one and the same polypeptide core of the submandibular mucin of the mouse.  相似文献   

5.
In this study, the effects of parasympathectomy and cholinergic agonists on gap-junctional intercellular communication and salivary secretion were investigated to clarify the involvement of salivary secretion in delayed uncoupling between acinar cells of rat submandibular glands. Gap-junctional intercellular communication was monitored as dye-coupling in the acinar cells of isolated acini by the transfer of Lucifer Yellow CH. Parasympathectomy induced dye-uncoupling in the acinar cells isolated from denervated salivary glands 12 hr after parasympathectomy-induced salivary secretion. Intraperitoneal application of carbachol (CCh), acetylcholine, pilocarpine, but not isoproterenol, stimulated salivary secretion, and then induced dye-uncoupling in the acinar cells 12 hr later. Atropine suppressed both the salivary secretion and delayed dye-uncoupling induced by parasympathectomy and CCh, when atropine was applied intraperitoneally before the induction of salivary secretion. However, atropine did not suppress the delayed dye-uncoupling by intraperitoneal application of CCh, when atropine was injected after the cessation of CCh-induced secretion. These results suggest that delayed inhibition of gap-junctional intercellular communication by parasympathectomy and cholinergic agonists in rat submandibular glands might be related to the change of secretory function after salivary secretion.  相似文献   

6.
Glycoprotein AM1, a glycoprotein from the submandibular glands of the mouse was isolated from the 100 000 × g tissue extract by polyacrylamide gel electrophoresis. An antiserum to purified glycoprotein AM1 was prepared, and its specificity was tested by immunodiffusion and immunoelectrophoresis. Glycoprotein AM1 could be detected in large quantity only in the submandibular glands of the mouse and in very small amounts in the parotid and sublingual glands and in serum. No glycoprotein AM1 was found in the murine brain, heart, lung, liver, spleen, kidney, pacreas, spinal cord and testis. In addition, glycoprotein AM1 was not detectable in the submandibular glands of the rat and rabbit, and in whole human saliva. No cross-reactivity was found with murine submandibular proteinase A and porcine pacreatic kallikrein. The cellular localization of glycoprotein AM1 was determined by the indirect immunofluorescence technique. In the submandibular glands bright fluorescence was only present in the acinar cells, throughout the whole gland. In the sublingual glands faint fluorescence was detectable as a diffuse network around the acini and possibly in the serous acinar demilune cells. On a subcellular level, glycoprotein AM1 could be demonstrated in the extract of the SMC secretory granular fraction, which originates largely from the acinar cells. On the other hand, glycoprotein AM1 was hardly detectable in the SMB secretory granular fraction, which originates predominantly from the granular convoluted tubular cells. Consomitantly, glycoprotein AM1 was secreted in vivo and could be detected in whole saliva, particularly after stimulation with isoproterenol and carbamylcholine, and also with phenylephrine, but to a much lesser extent.  相似文献   

7.
Exocrine cells have an essential function of sorting secreted proteins into the correct secretory pathway. A clear understanding of sorting in salivary glands would contribute to the correct targeting of therapeutic transgenes. The present work investigated whether there is a change in the relative proportions of basic proline-rich protein (PRP) and acidic PRPs in secretory granules in response to chronic isoproterenol treatment, and whether this alters the sorting of endogenous cargo proteins. Immunoblot analysis of secretory granules from rat parotids found a large increase of basic PRP over acidic PRPs in response to chronic isoproterenol treatment. Pulse chase experiments demonstrated that isoproterenol also decreased regulated secretion of newly synthesized secretory proteins, including PRPs, amylase and parotid secretory protein. This decreased efficiency of the apical regulated pathway may be mediated by alkalization of the secretory granules since it was reversed by treatment with mild acid. We also investigated changes in secretion through the basolateral (endocrine) pathways. A significant increase in parotid secretory protein and salivary amylase was detected in sera of isoproterenol-treated animals, suggesting increased routing of the regulated secretory proteins to the basolateral pathway. These studies demonstrate that shifts of endogenous proteins can modulate regulated secretion and sorting of cargo proteins. amylase; parotid secretory protein; polarized secretion  相似文献   

8.
Summary The secretory behaviour of rat nasal glands, under normal conditions and after the application of cholinergic drugs, has been studied using morphological and radiobiochemical techniques.Autoradiography and electrophoresis provide evidence for the selective incorporation of 3H-arginine into the glycoprotein containing fraction of the nasal glandular secretion. Radiobiochemical experiments show that labelled arginine is rapidly incorporated into the acinar cells of unstimulated glands, although it takes approximately 4 h before the labelled secretory proteins leave the cells. The secretion of proteins is stimulated by the parasympathetic agonist pilocarpine, whose main action is to promote discharge. Histological sections show a depletion of secretory granules after pilocarpine treatment. The cholinergic antagonist atropine inhibits the secretion; the acinar cells are completely filled with secretory granules following this treatment. The time course of the events following atropine administration suggests that there is no feed-back system controlling glycoprotein synthesis.The techniques employed here therefore appear to be useful for studying the effects of drugs that interfere with the secretory activity of the nasal glands.  相似文献   

9.
Glycoprotein AM1, a glycoprotein from the submandibular glands of the mouse was isolated from the 100 000 X g tissue extract by polyacrylamide gel electrophoresis. An antiserum to purified glycoprotein AM1 was prepared, and its specificity was tested by immunodiffusion and immunoelectrophoresis. Glycoprotein AM1 could be detected in large quantity only in the submandibular glands of the mouse and in very small amounts in the parotid and sublingual glands and in serum. No glycoprotein AM1 was found in the murine brain, heart, lung, liver, spleen, kidney, pancreas, spinal cord and testis. In addition, glycoprotein AM1 was not detectable in the submandibular glands of the rat and rabbit, and in whole human saliva. No cross-reactivity was found with murine submandibular proteinase A and porcine pancreatic kallikrein. The cellular localization of glycoprotein AM1 was determined by the indirect immunofluorescence technique. In the submandibular glands bright fluorescence was only present in the acinar cells, throughout the whole gland. In the sublingual glands faint fluorescence was detectable as a diffuse network around the acini and possibly in the serous acinar demilune cells. On a subcellular level, glycoprotein AM1 could be demonstrated in the extract of the SMC secretory granular fraction, which originates largely from the acinar cells. On the other hand, glycoprotein AM1 was hardly detectable in the SMB secretory granular fraction, which originates predominantly from the granular convoluted tubular cells. Concomitantly, glycoprotein AM1 was secreted in vivo and could be detected in whole saliva, particularly after stimulation with isoproterenol and carbamylcholine, and also with phenylephrine, but to a much lesser extent.  相似文献   

10.
Hybridomas were produced by the fusion of NS1 myeloma cells with spleen cells of a BALB/c mouse immunized with rat submandibular saliva. Growth of hybridomas was evident in 60/96 wells, and colonies secreting antibodies against saliva components were identified in 20 wells by using a solid phase enzyme-linked immunoassay. Cloning of cells from 12 wells yielded originally 43 hybridoma cell lines secreting anti-saliva antibodies. After recloning, one hybridoma (4Cl3) was selected for further studies. The hybridoma (4Cl3) cells were grown as ascites tumors, and the antibodies were purified from the ascitic fluid by diethylaminoethyl Affi-gel Blue chromatography. The purified antibody (MA4), immunoglobulin G1, immunoprecipitated a 39K dalton protein from submandibular saliva, and also reacted with a protein of the same electrophoretic mobility on immunoblots. From extracts of submandibular gland slices, incubated with [3H]leucine, the antibody again immunoprecipitated a 39K protein, indicating that this protein is synthesized in the gland. MA4 was used for immunocytochemical stainings of submandibular glands of rats of different ages. In general, immunostaining was seen only in acinar cells. Thus, there was no staining in the glands of 1-day-old rats that lack differentiated acinar cells. In the glands of 1- to 4-week-old rats the number of immunoreactive cells and the extent of immunostaining paralleled the differentiation of the acinar cells. In the glands of adult rats a uniform staining of the secretory granules of the acinar cells was observed. The immunoreactive 39K protein seemed to be restricted to the acinar cells in the submandibular gland; there was no immunostaining in the parotid, sublingual, or lingual salivary glands, or in the pancreas, colon, and duodenum. Stimulation of saliva secretion by isoproterenol resulted in a virtual depletion of the antigen from the acinar cells. These results indicate the feasibility of producing mouse hybridomas that secrete antibodies against rat saliva components. The monoclonal antibody at hand will be useful in analyzing the differentiation of the acinar cells, and the factors that influence this differentiation process.  相似文献   

11.
Summary Nerve growth factor (NGF) was localized in the mouse submandibular gland by means of indirect immunofluorescence applied to 0.5 mthick sections of freeze-dried, plastic-embedded tissue. The antibody to NGF (IgG-fraction) was raised in rabbits immunized with pure 2.5 S NGF from submandibular glands of adult male mice.In the male gland anti-NGF bound selectively to the secretory granules was present in the cells of the granular ducts. Immunoreactive granules extended from the perinuclear region toward the apical pole. In the female gland immunoreactive cells and granules were considerably less abundant than in males. Immunofluorescence was confined to individual secretory cells located in the wall of the granular striated duct.In the present study no support was found for the hypothesis suggesting that immunoreactive NGF is formed within the secretory granules during their transport from the perinuclear region to the apical pole.  相似文献   

12.
Summary Rat submandibular salivary gland acinar cells were transfected by CaPO4 precipitation using a plasmid containing a replication-defective simian virus (SV40) genome. Out of 27 clonal cell lines, two were shown to have moderate to high levels of cytodifferentiation and salivary gland acinar cell function. Functional studies with the two cell lines indicated that the β-adrenergic agonist, isoproterenol, vasoactive intestinal peptide, and prostaglandin E1 were effective activators of intracellular cyclic AMP production. Epinephrine, norepinephrine, phenylephrine, acetylcholine, and P2U-purinoceptor agonists were effective in increasing inositol phosphate production and intracellular free calcium levels, whereas substance P was without effect. Utilizing indirect immunofluorescence analysis, both cell lines were shown to express glutamine/glutamic acid-rich proteins, a submandibular acinar cell specific secretory protein family. Electron microscopic evaluation documented the maintenance of tripartite junctional complexes, cellular polarization, and the presence of moderate amounts of secretory granules and rough endoplasmic reticulum. The two cell lines had doubling times of 25 h.  相似文献   

13.
The research was planned to study the subcellular distribution of enzymatic secretory products within the secretory structures of the mouse major salivary glands at light and electron microscopy level by immunogold silver stain (IGSS) technique and double-sided post-embedding immunogold binding and silver amplification in order to speculate about their compartmentation. In particular, we experimented the above immunogold labeling approaches to localize the lysozyme and to verify its distribution patterns in relation to another secretion enzyme, alpha-amylase. Co-presence of lysozyme and alpha-amylase was observed in the convoluted granular tubule cells of the submandibular gland and in the demilunar cells of the sublingual gland as well as in the electron-dense regions of the mottled secretory granules in the parotid gland. Exclusive binding patterns of lysozyme were observed in the acinar cells of the submandibular and sublingual glands where alpha-amylase did not occur.  相似文献   

14.
Colchicine inhibited amylase secretion by isolated rat parotid glands only 6 h after administration of the drug in vivo. This delayed effect was not the result of the inability of the drug to reach its reaction site. When parotid glands were emptied of their secretory granules by isoproterenol treatment, the subsequent replenishment of cells with granules was inhibited by colchicines. Colchicine concomitantly produced alterations of the Golgi complexes, the cisternae of which were reduced in size and surrounded by clusters of microvesicles. Incubation of parotid glands with colchicines for prolonged durations failed to alter stored amylase secretion as stimulated by isoproterenol, but it inhibited the release of de novo synthesized enzyme. Another colchicines-binding activity, firmly bound to the particular fraction of homogenates, was found, of which a part may represent membrane located microtubular protein. An assembly-disassembly cycle of microtubules appears to exist in the parotid gland, as in the liver. However, only 14 percent of tubulin was found to be polymerized as microtubules in parotid glands as opposed to 40 percent in the liver. The present data suggest that colchicine primarily inhibits the transfer of secretory material towards or away from the Golgi complexes but not the hormone-stimulated secretion of stored amylase.  相似文献   

15.
The possibility that old and new secretory granules do not mix and that older exportable protein can be secreted preferentially was tested on parotid gland in vitro. Slices from fasted animals were pulse labeled for 3 min with L-[3H]leucine. Subcellular fractionstion showed that after 1 90-min chase period, the formation of new labeled secretory granules was mostly completed. The ratio of label in secretory granules to label in microsomes increased 250-fold during the period 5--90 min postpulse. After the 90-min chase, a submaximal rate of secretion was initiated by adding a low concentration of isoproterenol to the slices. Preferential secretion of old unlabeled exportable protein was evident from the finding that the percent of total amylase secreted was 3.5-fold greater than the percent of labeled protein secreted. Preferential secretion of old unlabeled exportable amylase was undiminished even when the chase period before addition of isoproterenol was extended to 240 min. Such long chase incubations were still meaningful due to the fact that the spontaneous rat of amylase release and radioactive protein release from the slices was negligibly low. A high isoproterenol concentration added to the slices after a 90-min chase produced the following results. An initial phase of preferential secretion of old unlabeled protein was soon replaced by secretion of a random mixture of new and old exportable protein. Electron micrographs indicated that high rates of secretion involved sequential fusion of secretory granules so that the lumen extended deep into the cell where the new labeled granules were presumably located. At low rates of secretion, the lumen showed no such deep extensions. Experiments were also conducted on slices from glands which had been largely depleted of old granules by prior injection of isoproterenol into the animals. Secretion of labeled protein from such slices stopped with the export of 80% of the labeled protein. This finding indicates that about 20% of the radioactive protein is cellular nonexportable protein and that the slices are capable of exporting the entire amount of secretory protein which was symthesized in vitrol. In addition to the beta-adrenergic receptor which mediates protein secretion, the parotid acinar cell also possesses an alpha-adrenergic and a cholinergic receptor both of which cause K+ release, vacuole formation, and water secretion. Activation of either of the latter two receptors in conjunction with the beta-adrenergic receptor increased randomization of the protein secreted. It is concluded that in the rat parotid acinar cell there is little spontaneous mixing between old granules near the luminal cell membrane and new granules coming up behind from the Golgi complex. The neurotransmitters which induce secretion produce the observed randomization.  相似文献   

16.
In both parotid and submandibular glands a parasympathetic non-adrenergic, non-cholinergic (NANC) nerve-evoked secretion of saliva was demonstrated. Saliva evoked by exogenous substance P was poor in protein, while saliva evoked by VIP was protein-rich. In a subthreshold dose for fluid secretion VIP released protein and potentiated the responses elicited by substance P, particularly regarding the output of protein. The two neuropeptides may contribute to the parasympathetic NANC secretion of saliva in the mink. Further, agonists responsible for the secretory NANC response are also likely to contribute to the secretory response of the glands to parasympathetic stimulation in the absence of autonomic receptor blockade in this species.  相似文献   

17.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

18.
The submandibular glands of male C57BL/6J mice were studied cytologically and chemically at the following ages (months): 1–1.5, 6–8, 12–13, 28–32. The relative proportion of granular convoluted tubules (GCT) as well as the size and content of secretion granules of GCT cells, progressively increased throughout the first year of life. Correspondingly, the concentration within the glands of two GCT cell products, epidermal growth factor (EGF) and protease, also steadily increased. In senescent glands, GCTs formed relatively less of the gland parenchyma and were composed of shorter cells with reduced amounts of secretory granules. The concentration of EGF was reduced to 17% of its peak value at one year, while protease activity declined to 50% of its peak value. These morphologic and chemical findings imply a functional impairment in submandibular glands of the mouse with senescence.  相似文献   

19.
Renin and epidermal growth factor (EGF) are synthesized in large amounts by the male mouse submandibular glands. We report the peptides to be secreted mainly in an exocrine manner. The highest values in saliva are obtained upon stimulation with the alpha-adrenergic agonist phenylephrine. The median value for renin is 54 700 nmol/l and the median value for EGF is 211 800 nmol/l. Aggressive behaviour and beta-adrenergic stimulation also increase salivary output of both peptides, while vasoactive intestinal polypeptide (VIP) plus pilocarpine selectively stimulate the secretion of renin. The pattern of increase in plasma is comparable to that in saliva though the substance concentration is lower by a factor of 2 to 70 for renin and a factor of 280 to 12 000 for EGF.  相似文献   

20.
The effects of morphine, 1-aminocyclobutane-cis-1,3-dicarboxylic (ACBD; NMDA agonist) and 3-((R)2-carboxypiperazin-4-yl)-propyl-l-phosphoric acid (CPP; NMDA antagonist) and their concurrent therapy on rat submandibular secretory function were studied. Pure submandibular saliva was collected intraorally by micro polyethylene cannula from anaesthetized rats using pilocarpine as secretagogue. Intraperitoneal injection of morphine (6 mg/kg) induced significant inhibition of salivary flow rate, total protein, calcium, and TGF-beta1 concentrations. Administration of ACBD (10 mg/kg) and CPP (10 mg/kg) alone did not influence secretion of submandibular glands. In combination therapy, coadministration of CPP with morphine did not influence morphine-induced changes in salivary function while ABCD could restore all morphine-induced changes. In combination treatment, ACBD prevented morphine-induced reduction of flow rate, total protein, calcium, and TGF-beta1 and reached control levels. It is concluded that morphine-induced alterations in submandibular gland function are mediated through NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号