首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mosquitoes (Diptera: Culicidae) are considered to be huge threat among millions of peoples, animals, and other living organisms in the world. Most of the vector borne diseases such as malaria, filariasis, dengue hemorrhagic fever, chikungunya, Japanese encephalitis etc., created huge impact on humans in all over the world. Vector diseases in Kingdom of Saudi Arabia are increasing day by day and their control measures taken through the government sectors for eradicating the vectors helps in controlling the diseases but still more approaches to be implemented or assimilated. Most of the synthetic or chemical based insecticides to control mosquitoes developed resistance among their communities even though they showed their potential in controlling the vector in initial days. Botanical insecticides from plant-based origin such as active compounds, essential oils, green synthesized nanomaterials, and microbial secondary metabolites helps more efficiency in controlling vectors. Mode of action against vectors differs based on its persisting active ingredients, such as larvicidal, pupicidal, adulticidal, oviposition, morphological changes etc. Even though number of research works has been carried out against mosquito species, there is only limited number of studies undergone against mosquito vectors from Saudi Arabia origin. Hence this review will give us the current knowledge on the effectiveness of botanical insecticides against major mosquito vectors from Saudi Arabia. Thus, it gives more significant against medical and veterinary sectors.  相似文献   

2.
Botrytis cinerea is one of the most destructive pathogens of ve?getables and fruits both in the field and storage. There have been several research activities focused on developing biocontrol strategies for the pathogen due to its resistance to the commonly used synthetic fungicides. Additionally, concerns have been raised over residual effect of current synthetic fungicides used for its control. Most of these research activities have focused on Trichoderma spp., Ulocladium spp., Bacillus subtilis, plant extracts and their essential oils with some commercial products available on the market for the control of B. cinerea disease. This review summarises some of the current published information on the use of biocontrol agents and plant-based compounds for B. cinerea control. Some limitations and future prospects were also mentioned.  相似文献   

3.
Widespread use of chemical insecticides has resulted in development of insect resistance and natural products with biological activities could become an attractive alternative to control insect pests. In order to find more effective insecticides for controlling mosquito, various mosquitocidal compounds are studied. Recently, juvenile hormone antagonists (JHANs) have been found to be to safe and effective insecticides for control of mosquito. In order to identify novel insecticidal compounds with JHAN activity, several chalcones were surveyed on their JHAN activities and larvicidal activities against Aedes albopictus larvae. Among them, 2′‐hydroxychalcone and cardamonin showed high levels of JHAN and mosquito larvicidal activities. These results suggested that chalcones with JHAN activity could be useful for control of mosquito larvae.  相似文献   

4.
Most species of the genus Laggera are often used in traditional and folk medicines for the treatment of jaundice, inflammation, leukemia, removing phlegm, bronchitis and bacterial diseases. The essential oils obtained from Laggera plants are rich sources of oxygenated monoterpenes and sesquiterpenes. Among oxygenated monoterpenes, aromatic ether 2,5‐dimethoxy‐p‐cymene is the most abundant and dominant compound of many essential oils of the Laggera species. Till today, to the best of our knowledge, chemical compounds of the essential oils and/or extracts of only eight Laggera species were reported from different countries. Thus, this review presents the chemical compositions and biological activities of the essential oils of these plants studied in thirteen countries. In addition, it discusses the reported ethnobotanical and ethnopharmacological information as well as biological activities of the extracts and some of the isolated compounds of Laggera plants species.  相似文献   

5.
Insecticide resistance and growing public concern over the safety and environmental impacts of some conventional insecticides have resulted in the need to discover alternative control tools. Naturally occurring botanically‐based compounds are of increased interest to aid in the management of mosquitoes. Susceptible strains of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Anopheles gambiae (Meigen) (Diptera: Culicidae) were treated with permethrin, a common type‐I synthetic pyrethroid, using a discriminate dose that resulted in less than 50% mortality. Piperonyl butoxide (PBO) and 35 essential oils were co‐delivered with permethrin at two doses (2 and 10 µg) to determine if they could enhance the 1‐h knockdown and the 24‐h mortality of permethrin. Several of the tested essential oils enhanced the efficacy of permethrin equally and more effectively than piperonyl butoxide PBO, which is the commercial standard to synergize chemical insecticide like pyrethroids. PBO had a strikingly negative effect on the 1‐h knockdown of permethrin against Ae. aegypti, which was not observed in An. gambiae. Botanical essential oils have the capability of increasing the efficacy of permethrin allowing for a natural alternative to classic chemical synergists, like PBO.  相似文献   

6.
Four oils from Piper nigrum, Litsea cubeba, Zanthoxylum bungeanum and Curcuma longa were obtained by ethanol extraction. The repellency of these oils and two major compounds (linalool and piperine) was evaluated against female adult and third‐instar nymphs of the rice pest, Nephotettix cincticeps, under laboratory and glasshouse conditions. Paired‐choice and no‐choice assays were used for each treatment, with essential oils evaluated after 24 and 48 hr of exposure and chemical compounds evaluated after 12 and 24 hr of exposure. The potential effects of essential oils on activities of glutathione S tranferase (GST), carboxyl esterase (CarE) and acetyl cholinesterase (AchE) were also evaluated after 48 hr of exposure to leafhoppers. The constituents of the essential oils were determined using GC‐MS. The results showed that the major components in the oils were piperine (34.75%) for P. nigrum, 9,12‐octadecadienoic acid (Z,Z) (18.74%) for L. cubeba, ethanone, 1‐(2‐hydroxy‐4,6‐dimethoxyphenyl) (18.51%) for Z. bungeanum and turmerone (15.89%) for C. longa. In all cases, the essential oils repelled female adults and third‐instar nymphs of N. cincticeps. The repellency of the tested oils and chemicals compounds in the paired‐choice assay was higher than in the no‐choice assay. In all experimental conditions, P. nigrum and C. longa oils were the most and the least potent, respectively. Linalool was the best repellent among the single‐tested compounds under laboratory conditions. In the glasshouse study, the highest repellency was observed in the mixture of linalool and piperine. GST and CarE activities of leafhoppers were significantly enhanced by exposure to the four essentials oils; AchE activity increased significantly only in the P. nigrum and L. cubeba assays. Our results clearly indicate that the tested oils and chemical compounds are promising agents for developing plant‐based pesticides to control N. cincticeps.  相似文献   

7.
Abstract

The literature on efficacy of plant essential oils and their constituents for the management of Tribolium spp. (T. castaneum and T. confusum), instigating infestation of a variety of stored grains and their products is reviewed here. Both species caused significant losses in the diverse food grains and their products through infestation. Essential oils of higher plants showed potential activity in the management of these infestation driven losses. Researchers have found that essential oils and their chemical constituents have significant toxicity against both the species of Tribolium via different modes of action like repellent, insecticidal, ovicidal, larvicidal, pupicidal, ovipositional and feeding deterrent actions. Concerning repellency and in vivo bioassays, few studies have been done with the essential oils against T. confusum, thus, more investigations are required to find the repellent agents against this insect. There are some essential oil-based botanical insecticides which have been proved effective for the protection of food grains from both beetles during storage. These botanical insecticides also exhibited behaviour altering properties against both beetles, thus, reducing the problem of pest resistance which is a problem with conventional insecticides. Therefore, essential oils-based botanical insecticides may be preferred option than conventional insecticides for protecting stored grains and their products against Tribolium infestation.  相似文献   

8.
Plants are a prospective source of novel natural insect repellents and botanical insecticides. This study was conducted to investigate the chemical composition of the essential oils of three plants growing in Saudi Arabia, namely Ducrosia anethifolia, Achillea fragrantissima, and Teucrium polium; and to evaluate their potential mosquitocidal and repellent activities against adult female Culex pipiens L. The main components of the three oils were found to be decanal (28.9%) and chrysanthenyl acetate (10.04%), (D. anethifolia); sabinyl acetate (35.79) and artemesia ketone (18.28%) (A. fragrantissima); α‐cadinol (49.53%) and δ‐cadinene (10.23%) (T. polium). The oil of A. fragrantissima was the most toxic (LC50 = 0.11 μL/L air) followed by D. anethifolia and T. polium with LC50 values of 5.22 and 25.98 μL/L air, respectively. T. polium oil was the most repellent (292 min at 2 μL/cm2), followed by D. anethifolia and A. fragrantissima. The results indicate that the essential oils have a potential fumigant insecticidal and repellent activities for mosquito control.  相似文献   

9.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say is one of the most important defoliator pests of potato in the world and it often causes extremely large potato yield losses. Potatoes are the preferred hosts for the pest, but it may feed and reproduce on a number of other plants in the Solanaceae family. Public concern related to pesticides and their residues in and on the foods had prompted a rise of consumer interest in organically produced foods. There have been growing efforts to detect and introduce suitable plant compounds that they have insecticidal properties. However, discovering of plant extracts for possible use in control of this pest requires more studying about plant extracts and compounds. Since resistance of CPB to common chemical insecticides is well documented and potato is one of the most prominent nutritious food products for many people in many countries, we examined the effect of essential oils (EOs) of European pennyroyal, lavander, mint, oregano and savory and methanolic extracts of fumitory, licorice and oregano on the pest. These plants were selected because they have medicinal properties and they are safe to human and environment. Adult CPBs were exposed to mentioned plant extracts and essential oils. LC50 values for EOs of lavander and European pennyroyal were 4154 and 3561 ppm, respectively. The results demonstrated that essential oil of European pennyroyal (Mentha longifolia) would be suitable compound to control the pest, but essential oil of mint (Mentha spicata) was not effective against the pest. Also it is notable that at all treatments, the amount of adult feeding was very low.  相似文献   

10.
The mosquito Aedes aegypti L. (Diptera: Culicidae) is a vector of arboviral diseases such as dengue fever. Currently, the main approach to mosquito control is the application of synthetic insecticides, which can lead to negative environmental impacts and insecticide resistance in mosquito populations. As such, there has been increased interest in developing alternative methods for control of vector populations such as utilizing plant compounds that act as larvicides. The aim of this work is to evaluate the effectiveness of Eucalyptus sp. (Myrtaceae) essential oils for control of Ae. aegypti larvae. The essential oils of seven Eucalyptus species and hybrids were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry. The essential oils were further diluted in water with acetone (0.40%) at the following concentrations: 100, 50, 25, and 10 μg ml−1. Mortality trials were conducted in plastic containers with a solution of ultrapure water and 200 μl of diluted oil for a total volume of 50 ml per treatment. The experiments for each Eucalyptus species/hybrid and concentration were performed in triplicate, using a control containing only water and acetone. Twenty larvae were added to each container and mortality was recorded at 1, 2, 4, and 24 h. The Eucalyptus essential oils showed larvicidal activity in most of the evaluated concentrations, mainly at 50 and 100 μg ml−1. Eucalyptus benthamii Maiden & Cambage and the hybrid Urograndis displayed the highest larvicidal potential (100% at 24 h) in the 100 μg ml−1 treatment. Larval mortality of Ae. aegypti showed a positive correlation with the compounds γ-, o-cymol, o-cymene, terpineol, 3-dodecylfuran-2,5-dione, α-pinene, globulol, and ledol. The most abundant compounds identified in the essential oils were 1,8-cineole and α-pinene. These results highlight the potential of using Eucalyptus essential oils for the isolation of natural larvicidal products.  相似文献   

11.
Bacillus thuringiensis subsp. israelensis is a bioinsecticide used for larval mosquito control and it represents a safe alternative to chemical insecticides. Despite its environmental safety, it is less efficient and persistent than chemical insecticides. To bypass these limitations, we propose to combine the advantages of chemical and biological insecticides by producing Bti in a medium supplemented with a chemical insecticide (DDT, deltamethrin, permethrin, propoxur or temephos). Among the investigated insecticides, the addition of deltamethrin in the medium induced a higher toxicity (over 6·72‐fold) of the composite deltamethrin‐Bti towards mosquito larvae as compared to Bti alone. This was mainly due to the insertion of deltamethrin into the membranes of Bti spores, as evidenced by a quantification of membrane‐extracted deltamethrin by HPLC. This composite larvicide is a promising tool to decrease the quantity of chemicals dispersed in the environment, to increase the efficacy of Bti and to facilitate its widespread use as a transition between chemical and biological insecticides. Further experiments are required to characterize the mechanisms that underline the incorporation of deltamethrin into Bti to optimize the production and the toxicity of this composite larvicide.

Significance and Impact of the Study

This study is the first report of an increased efficacy of the mosquitocidal bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) when produced with a chemical insecticide. The results clearly demonstrate that deltamethrin is able to synergize the insecticidal activity of Bti through inclusion into spore membranes, reducing off‐target and nonspecific toxicity occurring when the chemical is used alone as sprays. This new composite chemical–biological insecticide can become an invaluable tool as an intermediate between single chemical usage and the widespread use of Bti, notably in developing countries with limited financial resources for intensive mosquito control campaigns.  相似文献   

12.
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides.  相似文献   

13.
The chemical composition and antioxidant activity of essential oils and MeOH extracts of stems, needles, and berries from Juniperus rigida were studied. The results indicated that the yield of essential oil from stems (2.5%) was higher than from needles (0.8%) and berries (1.0%). The gas chromatography/mass spectrometer (GC/MS) analysis indicated that 21, 17, and 14 compounds were identified from stems, needles, and berries essential oils, respectively. Caryophyllene, α‐caryophyllene, and caryophyllene oxide were primary compounds in both stems and needles essential oils. However, α‐pinene and β‐myrcene mainly existed in berries essential oils and α‐ionone only in needles essential oils. The high‐performance liquid chromatography (HPLC) analysis indicated that the phenolic profiles of three parts exhibited significant differences. Needles extracts had the highest content of chlorogenic acid, catechin, podophyllotoxin, and amentoflavone, and for berries extracts, the content of those compounds was the lowest. Meanwhile, three in vitro methods (DPPH, ABTS, and FRAP) were used to evaluate antioxidant activity. Stems essential oil and needles extracts exhibited the powerful antioxidant activity than other parts. This is the first comprehensive study on the different parts of J. rigida. The results suggested that stems and needles of J. rigida are useful supplements for healthy products as new resources.  相似文献   

14.
The variation of the essential‐oil composition among ten wild populations of Stachys lavandulifolia Vahl (Lamiaceae), collected from different geographical regions of Iran, was assessed by GC‐FID and GC/MS analyses, and their intraspecific chemical variability was determined. Altogether, 49 compounds were identified in the oils, and a relatively high variation in their contents was found. The major compounds of the essential oils were myrcene (0.0–26.2%), limonene (0.0–24.5%), germacrene D (4.2–19.3%), bicyclogermacrene (1.6–18.0%), δ‐cadinene (6.5–16.0%), pulegone (0.0–15.1%), (Z)‐hex‐3‐enyl tiglate (0.0–15.1%), (E)‐caryophyllene (0.0–12.9), α‐zingiberene (0.2–12.2%), and spathulenol (1.6–11.1%). For the determination of the chemotypes and the chemical variability, the essential‐oil components were subjected to cluster analysis (CA). The five different chemotypes characterized were Chemotype I (germacrene D/bicyclogermacrene), Chemotype II (germacrene D/spathulenol), Chemotype III (limonene/δ‐cadinene), Chemotype IV (pulegone), and Chemotype V (α‐zingiberene). The high chemical variation among the populations according to their geographical and bioclimatic distribution imposes that conservation strategies of populations should be made appropriately, taking into account these factors. The in situ and ex situ conservation strategies should concern all populations representing the different chemotypes.  相似文献   

15.
The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk . were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC‐FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α‐thujone (34.39%), camphor (17.48%), and β‐thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α‐thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α‐thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram‐positive and Gram‐negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.  相似文献   

16.
The chemical composition and seasonal variation throughout one year of the essential oils from leaves of Baccharis microdonta and B. elaeagnoides, collected in Campos do Jordão, SP, were investigated. The composition of the latter species has been described for the first time. By GC (RI) and GC/MS analysis, 43 compounds were identified, and a predominance of oxygenated sesquiterpene derivatives was found in both species. The main components of the B. microdonta oils were elemol ( 31 ; 11.7–30.6%), spathulenol ( 34 ; 4.7–9.1%), β‐caryophyllene ( 19 ; 3.7–6.2%), and germacrene D ( 24 ; 2.9–12.2%), and those of the B. elaeagnoides oils were 34 (10.1–21.5%), viridiflorol ( 35 ; 3.6–18.4%), 24 (0.9–13.8%), and 19 (3.5–9.4%). The identified compounds were grouped according to their respective C‐skeletons, and the percentages of occurrence of the C‐skeletons in the essential oils of leaves collected in the four seasons allowed identifying the preferential accumulation of different types of C‐skeletons as well as the seasonal variation of the biosynthetic routes over the studied period.  相似文献   

17.
Bacillus thuringiensis var. israelensis (Bti) is highly pathogenic to mosquito larvae and is widely used for mosquito control. Its mosquitocidal activity however is relatively low compared to many chemical insecticides. The detoxification mechanisms in the mosquito, among other things, might neutralize the Bti activity, resulting in resistance or tolerance. We tested whether or not the detoxification mechanisms against chemical insecticides might also operate against Bti, rendering it less effective. We targeted four enzymes in Aedes aegypti larvae involved in detoxification with inhibitors that have been used in resistance studies in chemical insecticides and assayed their effects on Bti toxicity. Results revealed that phenylmethanesulphonyl fluoride (PMSF), diethyl maleate, phenobarbital (PB), and piperonyl butoxide (PBO) altered Bti toxicity to various degrees. PMSF is a serine protease inhibitor that prevents Bti digestion and improves Bti activity. PB that induces several detoxifying enzymes had two different effects depending on the method of treatment. Mortality was higher when treatment with PB was discontinuous (149%) whereas with continuous treatment it was lower (101%). PBO, a typical cytochrome P450 inhibitor, increased Bti effect (159%). The combination of discontinuous pretreatment of larvae with PB followed by PBO had a synergistic effect and showed increased activity (146%). It appears that the mechanism for Bti resistance in mosquitoes is similar to that of chemical insecticides. Our studies indicate that we may be able to increase Bti activity by inhibiting some of the detoxification systems as active as broad spectrum chemical insecticides.  相似文献   

18.
The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies.  相似文献   

19.
The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock‐down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.  相似文献   

20.
Chemical insecticides released into the environment may have adverse biological effects. Therefore, there is a need for ecofriendly insecticides for mosquito control. Xerophytic plant extracts that may provide more ecofriendly active component were evaluated against Culex pipiens 4th instars. Plant extracts prepared using different solvents with a Soxhlet apparatus and different concentrations were tested against Culex pipiens larvae. The effects were observed at 24 h and 72 h intervals and LD50 and LD90 values determined. Chloroform (CHCl3) and ethyl acetate (EtOAc) extracts of Althaea ludwigii were the most effective against Cx. pipiens 4th instars, but were highly dependent on extract concentrations and exposure time. Results suggest that A. ludwigii extracts contain bioactive compounds, such as phenols and saponins, that may provide effective Cx. pipiens larval control. However, the extract was found to be toxic to zebrafish larvae, and may be toxic to other aquatic fauna. Further studies to determine the active components and toxicity to other fauna are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号