首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Snake venoms are a rich source of enzymes including many hydrolytic enzymes. Some enzymes such as phospholipase A2, proteolytic enzymes, and phosphodiesterases are well characterized. However many enzymes, such as the glycosidase, hyaluronidase, have not been studied extensively. Here we describe the characterization of snake venom hyaluronidase. In order to determine which venom was the best source for isolation of the enzyme, the hyaluronidase activity of 19 venoms from Elapidae, Viperidae, and Crotalidae snakes was determined. Since Agkistrodon contortrix contortrix venom showed the highest activity, this venom was used for purification of hyaluronidase. Molecular weight was determined by matrix-assisted laser desorption ionization mass spectroscopy and was found to be 59,290 Da. The molecular weight value as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 61,000 Da. Substrate specificity studies indicated that the snake venom enzyme was specific only for hyaluronan and did not hydrolyze similar polysaccharides of chondroitin, chondroitin sulfate A (chondroitin 4-sulfate), chondroitin sulfate B (dermatan sulfate), chondroitin sulfate C (chondroitin 6-sulfate), chondroitin sulfate D, chondroitin sulfate E, or heparin. The enzyme is an endo-glycosidase without exo-glycosidase activity, as it did not hydrolyze p-nitrophenyl-beta-D-glucuronide or p-nitrophenyl-N-acetyl-beta-D-glucosaminide. The main hydrolysis products from hyaluronan were hexa- and tetrasaccharides with N-acetylglucosamine at the reducing terminal. The cleavage point is at the beta1,4-glycosidic linkage and not at the beta1,3-glycosidic linkage. Thus, snake venom hyaluronidase is an endo-beta-N-acetylhexosaminidase specific for hyaluronan.  相似文献   

2.
  • 1.1. A hemorrhagic toxin was isolated from the venom of Agkistrodon contortrix laticinctus (Broad-Banded Copperhead) by Sephacryl S-200 HR column chromatography followed by high performance chromatography on Waters DEAE 5PW and protein Pak 125 columns.
  • 2.2. Homogeneity was determined by the presence of a single band in acrylamide gel electrophoresis with silver staining.
  • 3.3. ACL hemorrhagic toxin I has a molecular weight of about 29,000, is slightly acidic, and is a metalloprotease with activity towards the substrates N,N-dimethylcasein and bovine fibrinogen. Although the toxin is able to hydrolyze fibrinogen in vitro, it does not possess any defibrinogenating activity in vivo whereas the crude venom does show this activity. It has similar cleavage specificities to other snake venom hemorrhagic toxins.
  • 4.4. ACL hemorrhagic toxin I causes hemorrhage of rapid onset, present within 5 min of intramuscular injection into mice, and the pathogenesis is one of hemorrhage per rhexis in which capillary endothelial cells are ruptured.
  相似文献   

3.
The protease from Southern Copperhead venom that activates protein C was purified to homogeneity by sulfopropyl (SP)-Sephadex C-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and Mono-S fast protein liquid chromatography. The purified enzyme is a glycoprotein containing 16% carbohydrate, and migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 40,000 kDa. The enzyme is composed of a single polypeptide chain possessing an NH2-terminal sequence of Val-Ile-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-His. The purified venom protein C activator hydrolyzed several tripeptide p-nitroanilides. The amidolytic and proteolytic activities of the enzyme were readily inhibited by phenylmethanesulfonyl fluoride, p-amidinophenylmethanesulfonyl fluoride, chloromethyl ketones, and human antithrombin III. Covalent binding of diisopropyl fluorophosphate to the enzyme was confirmed using a tritium-labeled preparation of the inhibitor. The venom protease readily activated human and bovine protein C at 1:1000 enzyme:substrate weight ratio. The protease also cleaved human prothrombin, factor X, factor IX, factor VII, and fibrinogen. Prothrombin coagulant activity decreased upon incubation with the venom protease, and the rate of this reaction was reduced in the presence of calcium. Factor X and factor IX coagulant activity increased upon incubation with the venom protease in the presence of calcium, and decreased in the absence of calcium. Human factor VII clotting activity decreased slightly upon incubation with the venom protease. Although the venom protease did not clot human fibrinogen, it nonetheless cleaved the A alpha chain of fibrinogen, and this cleavage appeared to be associated with a measurable increase in the clottability of the protease-treated fibrinogen by thrombin. These data demonstrate that the protein C activator from Southern Copperhead venom is a typical serine protease with a relatively broad specificity.  相似文献   

4.
An enzyme capable of activating protein C has been purified 60-fold from the venom of the Southern copperhead snake (Agkistrodon contortrix) by ion-exchange and gel filtration chromatography. The purified enzyme consists of a single polypeptide with an apparent molecular weight of 37,000. The isoelectric point of the protein C activator was determined to be 6.3 when measured by chromatofocusing. The enzyme was inhibited by p-nitrophenyl p-guanidinobenzoate, phenylmethanesulfonyl fluoride, and D-Phe-Pro-Arg-CH2Cl but was not affected by cysteine-directed reagents or by metal chelators. These results suggest that the enzyme is a serine protease. Protein C activator was capable of hydrolyzing the thrombin substrate tosyl-Gly-Pro-Arg-p-nitroanilide (TGPRpNA), and steady-state kinetic studies determined that the Km for amidolysis of this substrate was 1.1 mM while the Vmax was 66 s-1. The activator demonstrated considerable substrate specificity since the amidolysis of D-Phe-Pip-Arg-pNA, D-Ile-Pro-Arg-pNA, Bz-Ile-Glu-Gly-Arg-pNA, D-Val-Leu-Arg-pNA, and pyrGlu-Pro-Arg-pNA was less than 10% of that of TGPRpNA when measured under identical conditions using 1.0 mM substrate concentrations. The enzyme appears to be thrombin-like in its preference for arginyl as compared to lysyl chloromethyl ketones as well as by its inhibition by benzamidine and p-aminobenzamidine. However, the substrate specificity of the activator is distinguished from alpha-thrombin in that it does not clot fibrinogen and does not react with antithrombin III or hirudin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The amino acid sequence of a protease, protein C activator, from Agkistrodon contortrix contortrix venom was determined. Peptide fragments obtained by chemical or enzymatic cleavage of the S-carboxymethylated protein were purified by gel filtration and reverse-phase high-performance liquid chromatography. The present study demonstrates that protein C activator from A. contortrix contortrix venom is a trypsin-type serine protease that is composed of 231 residues with a molecular weight of 25,095 for the polypeptide portion of the molecule. By analogy to the mammalian serine proteases, the catalytic triad in venom protein C activator consists of His-40, Asp-85, and Ser-177. The protein also contains three N-linked glycosylation sites at Asn-21, Asn-78, and Asn-129. The amino acid sequence of protein C activator exhibits a high degree of sequence identity with other snake venom proteases: 73% with batroxobin, 68% with flavoxobin, and 55% with Russell's viper venom factor V activator.  相似文献   

6.
One of the fractions obtained by the carboxymethylcellulose ion-exchange chromatography of northern copperhead (Agkistrodon contortrix mokasen) venom prevented the thrombin-induced clotting of fibrinogen by proteolytically degrading the fibrinogen. The active component has been further purified to apparent electrophoretic homogeneity by molecular sieve chromatography. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis indicated a molecular weight of 22 900 +/- 600 for the purified enzyme. In addition to its fibrinogenase activity, it catalyzed the hydrolysis of hide power azure and had an intraperitoneal LD50 value in mice of less than 5.1 microgram/g body weight. The enzyme rapidly destroyed fibrinogen's ability to form clots. Electrophoresis of fibrinogen which had been incubated only a few minutes with the fibrinogenase revealed the rapid disappearance of the alpha-chain and the appearance of lower molecular weight fragments. The neutral pH optimum and ethylenediamine-tetraacetic acid (EDTA) and dithiothreitol sensitivity indicated that this enzyme belonged to the class metalloproteinases. Atomic absorption studies have revealed one zinc atom per molecule of protein. The apoenzyme's activity was restored by incubation with ZnCl2.  相似文献   

7.
A fibrinolytic enzyme present in Agkistrodon contortrix contortrix (southern copperhead) venom has been purified by combination of CM-cellulose chromatography, molecular sieve chromatography on Sephadex G-100, p-aminobenzamidine-agarose affinity chromatography, and DEAE-cellulose chromatography. The enzyme, fibrolase, has a molecular weight of 23,000-24,000 and an isoelectric point of pH 6.8. It is composed of approximately 200 amino acids, possesses a blocked NH2-terminus and contains little or no carbohydrate. The enzyme shows no activity against a series of chromogenic p-nitroanilide substrates and is not inhibited by diisopropylfluorophosphate, soybean trypsin inhibitor, Trasylol, or p-chloromercuribenzoate. However, the enzyme is a metalloproteinase since it is inhibited by EDTA, o-phenanthroline and tetraethylenepentamine (a specific zinc chelator). Metal analysis revealed 1 mol of zinc/mol of protein. Study of cleavage site preference of the fibrinolytic enzyme using the oxidized B chain of insulin revealed that specificity is similar to other snake venom metalloproteinases with cleavage primarily directed to an X-Leu bond. Interestingly, unlike some other venom fibrinolytic metalloproteinases, fibrolase exhibits little if any hemorrhagic activity. The enzyme exhibits direct fibrinolytic activity and does not activate plasminogen. In vitro studies revealed that fibrolase dissolves clots made either from purified fibrinogen or from whole blood.  相似文献   

8.
J D Klein  F J Walker 《Biochemistry》1986,25(15):4175-4179
A protease has been purified by ion-exchange chromatography from the venom of Agkistrodon contortrix contortrix (Southern copperhead snake) that can activate the vitamin K dependent protein, protein C. The apparent molecular weight of this protease, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 20,000 under nonreducing conditions. Incubation of this protease with plasma resulted in a prolongation of the clotting time and a time-dependent increase in amidolytic activity. Incubation of the protease with purified protein C resulted in an increase in both amidolytic and anticoagulant activity. The protease had no inhibitory effect on thrombin, factor V, fibrinogen, or factor X. It had slight clotting activity toward fibrinogen. The apparent Km of the protease for protein C was 0.28 microM. Calcium ions were observed to inhibit protein C activation with an apparent Ki of 0.2 mM. Ethylenediaminetetraacetic acid, diisopropyl fluorophosphate, and soybean trypsin inhibitor were observed to inhibit the venom protease. These results suggest that the venom of the Southern copperhead snake contains a protease that is a specific activator of protein C.  相似文献   

9.
We have purified a cytotoxic L-amino acid oxidase (LAO) from Agkistrodon contortrix laticinctus snake venom by means of Superdex-200 gel filtration, followed by phenyl-Sepharose CL-4B chromatography. The purified enzyme (ACL LAO) is a dimer on gel filtration, with a M(r) of 60,000 for the monomer as estimated by SDS-PAGE. LAO activity was tested against 15 amino acids, but only 9 were oxidized by the enzyme, suggesting that it presents some degree of specificity. ACL LAO has apoptosis-inducing activity in an HL-60 cell culture assay. After 24 h treatment with 25 micrograms/ml of ACL LAO, the typical DNA fragmentation pattern of apoptotic cells was observed on agarose gel electrophoresis. NMR analysis showed the presence of a flavin mononucleotide prosthetic group. To solve its 3-D structure, crystals of the purified protein were grown in 0.1 M Tris-HCl, pH 8.5, and 2 M (NH(4))(2)SO(4). Diffraction data collected to 3.5 A showed that the protein crystallized in the tetragonal system, with unit cell a = b = 103.22 A, c = 183.45 A. This is the first report of preliminary crystallization data for a snake venom L-amino acid oxidase.  相似文献   

10.
In investigations aimed at characterizing snake venom blood clot-dissolving enzymes, we have developed a rapid two-step high-performance chromatography method for the isolation of these fibrinolytic enzymes from the venoms of Agkistrodon contortrix contortrix and Agkistrodon piscivorus conanti. The first step consisted of hydrophobic interaction chromatography on a propyl-aspartamide column. Fractions containing the fibrinolytic activity were then concentrated and applied to a hydroxylapatite column. The resulting preparation, assessed for purity by reverse-phase chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was homogeneous. The molecular weight of both venom fibrinolytic enzymes was approximately 23,000 and amino acid analysis, immunological cross-reaction, cyanogen bromide, and tryptic digestion indicate a significant degree of structural similarity. However, the general proteolytic activity of the A. p. conanti venom enzyme was significantly lower than the corresponding activity of the A. c. contortrix venom, whereas their fibrinolytic activities were quite similar.  相似文献   

11.
The protein C pathway plays an important role in the control and regulation of the blood coagulation cascade and prevents the propagation of the clotting process on the endothelium surface. In physiological systems, protein C activation is catalyzed by thrombin, which requires thrombomodulin as a cofactor. The protein C activator from Agkistrodon contortrix contortrix acts directly on the zymogen of protein C converting it into the active form, independently of thrombomodulin. Suitable crystals of the protein C activator from Agkistrodon contortrix contortrix were obtained from a solution containing 2 M ammonium sulfate as the precipitant and these crystals diffracted to 1.95 A resolution at a synchrotron beamline. The crystalline array belongs to the monoclinic space group C2 with unit cell dimensions a=80.4, b=63.3 and c=48.2 A, alpha=gamma=90.0 degrees and beta=90.8 degrees.  相似文献   

12.
The crude venom of Agkistrodon contortrix contortrix was characterized by means of 2D-PAGE (using various separation principles in the respective directions) and high performance gel filtration chromatography. It was found that the venom presents a rich and remarkably stable mixture of proteins, mostly glycoproteins, which may interact each other. High stability of the venom in spite of the presence of many proteolytic enzymes, must most likely be attributed to the sugar moieties of venom proteins. Carbohydrate composition also causes considerable heterogeneity in charge and the presence of wide range of charge isomers. The intricate complexity of the venom makes it a real difficult-to-separate mixture.  相似文献   

13.
The complete amino acid sequence of fibrolase, a fibrinolytic enzyme from southern copperhead (Agkistrodon contortrix contortrix) venom, has been determined. This is the first report of the sequence of a direct-acting, nonhemorrhagic fibrinolytic enzyme found in snake venom. The majority of the sequence was established by automated Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. The amino-terminus is blocked by a cyclized glutamine (pyroglutamic acid) residue, and the sequence of this region of the molecule was determined by mass spectrometry. Fibrolase is composed of 203 residues in a single polypeptide chain with a molecular weight of 22,891, as determined by the sequence. Its sequence is homologous to the sequence of the hemorrhagic toxin Ht-d of Crotalus atrox venom and with the sequences of two metalloproteinases from Trimeresurus flavoviridis venom. Microheterogeneity in the sequence was found at both the amino-terminus and at residues 189 and 192. All six cysteine residues in fibrolase are involved in disulfide bonds. A disulfide bond between cysteine-118 and cysteine-198 has been established and bonds between cysteines-158/165 and between cysteines-160/192 are inferred from the homology to Ht-d. Secondary structure prediction reveals a very low percentage of alpha-helix (4%), but much greater beta-structure (39.5%). Analysis of the sequence reveals the absence of asparagine-linked glycosylation sites defined by the consensus sequence: asparagine-X-serine/threonine.  相似文献   

14.
Sporulated oocysts and free sporocysts of a Sarcocystis sp. were isolated from the feces of a southern copperhead (Agkistrodon contortrix contortrix) collected in Arkansas (USA). Twenty sporocysts measured 11.2 by 8.5 microns, lacked a Stieda body, and had four sporozoites and a granular sporocyst residuum. Sarcocysts similar to those of Sarcocystis montanaensis were present in the tongues of prairie voles (Microtus ochrogaster) inoculated orally with 800 sporocysts 128 days previously. Sarcocysts were thin-walled, divided into compartments by septa, and had electron dense projections (0.14 microns) on the primary cyst wall. Infection was not pathogenic for prairie voles under the conditions of this study. No infections were observed in ICR strain laboratory mice (Mus musculus) or white-footed mice (Peromyscus leucopus) following oral inoculation of 800 sporocysts.  相似文献   

15.
The protein C activator Protac from A. contortrix venom is being investigated as a potential antithrombotic agent and as a tool for the preparation of activated protein C. Its established major application is the zymogen activation in functional protein C determinations based on either a clotting assay or a chromogenic substrate technique. The sensitivity of the activated partial thromboplastin time as an indicator reaction for Protac activated protein C depends on the contact activator component of the reagent. Protein C dose-response increased in the following order: kaolin greater than ellagic acid greater than sulfatide. This phenomenon is due to a competition of molecular affinities between Protac, plasma components and the different activating surfaces.  相似文献   

16.
Qualitative and quantitative differences of coagulant enzymes in venom samples from individuals of the Agkistrodon c.c. were studied by means of 2D-PAGE and high performance anion-exchange chromatography. A great diversity was found among individual venoms. The two most similar venoms had an identical composition in only about 90%, the least similar ones in about 45% spots. All venoms studied contained more than two fractions with fibrinolytic activity. In three out of the nine analysed venoms two different thrombic proteases were present, one venom contained only one of these enzymes, whereas in five venoms no thrombic activity was detectable.  相似文献   

17.
18.
The pathogenesis of skeletal muscle necrosis produced by Tityus Serrulatus venom was studied by means of light microscopy and electron microscopy. Wistar rats were inoculated subcutaneously, at some distance from the muscles under study, with a sublethal dose of scorpion venom. Samples were taken of the tibialis anterior muscles of both rear legs, 2, 7 and 24 hours postinoculation. Light microscopy analysis after 2 hours revealed certain changes identified as "delta lesions", and also the presence of hyperconcentrated muscle cells. Electron microscopy confirmed these lesions and also enabled us to identify a degree of discontinuity in the plasma membrane with a persistence of the basal membrane. Hyperconcentrated fibers could still be observed 7 hours postinoculation. Histochemical analysis revealed high levels of calcium within the fibers. 24 hours after inoculation with the venom, numerous phagocytic cells were found in the degenerated fibers. Muscle cells were also found to have undergone alterations indicative of an ischemic process. The most characteristic finding 7 days postinoculation was the appearance of regenerative fibers. After thirty days the muscles regained their normal appearance. It is suggested that Tityus Serrulatus venom induces myonecrosis by means of a twofold action: direct action, which gives rise in the first place to a rupture of the plasma membrane, permitting a massive entry of calcium this being a key factor in the process of cell lesion and an assumed indirect action due to ischemia.  相似文献   

19.
1. Hemorrhagic toxin was isolated from Agkistrodon bilineatus (Common cantil) venom using a three-step purification procedure to obtain 32.8 mg of purified hemorrhagic toxin from 700 mg of crude venom. 2. The purified toxin was homogeneous by disc polyacrylamide gel electrophoresis at pH 8.3, and by isoelectric focusing. 3. Hemorrhagic toxin possessed lethal, hemorrhagic and proteolytic activities. These activities of this toxin were inhibited by ethylenediaminetetraacetic acid (EDTA) and ethyleneglycol-bis-(beta-aminoethylether)N,N'-tetraacetic acid (EGTA), but not by cysteine or soybean trypsin inhibitor (SBTI). 4. Its molecular weight was approximately 48 kDa and the isoelectric point was 4.2. 5. Purified preparation hydrolyzed the Asn(3)--Gln(4), His(10)--Leu(11), Ala(14)--Leu(15), Tyr(16)--Leu(17), Arg(22)--Gly(23) and Phe(24)--Phe(25) bonds of oxidized insulin B. chain. 6. The A alpha chain of fibrinogen was first split and B beta chain was cleaved later by this toxin. 7. Hemorrhagic toxin contains 1 mol of zinc and 2 mol of calcium per mol of protein.  相似文献   

20.
1. Hemorrhagic toxin (Ac1-proteinase) was isolated from the venom of Agkistrodon acutus (Formosa) and the zinc content was determined (1.15 mol/mol protein). The results we extensively compared with hemorrhagic toxin e of Crotalus atrox venom (U.S.A.). Comparable results were obtained for zinc content, hemorrhagic and proteolytic activities for native hemorrhagic toxins from two different venoms. It is of interest that the zinc content of hemorrhagic toxins is identical even though the venoms are obtained from snakes inhabiting totally different continents. 2. Zinc content, hemorrhagic and proteolytic activities were compared before and after the removal of zinc. It was found that both hemorrhagic and proteolytic activities disappeared upon removal of the zinc. 3. Zinc content of all hemorrhagic toxins with proteolytic activity reported so far were also compared and it is concluded that regardless of their geographic origin, zinc is present in venom hemorrhagic toxins on a unimolar basis. 4. When zinc is removed there is a drastic change in the low-frequency region of the Raman spectrum suggesting the presence of a zinc ligand co-ordination. The decrease of alpha-helical content and increase of random coil are reflected in the amide I and III bands of Raman spectroscopy after the removal of zinc. Increase of random coil and the loss of zinc are probably responsible for the loss of hemorrhagic and proteolytic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号