首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erbin suppresses the MAP kinase pathway   总被引:5,自引:0,他引:5  
  相似文献   

2.
3.
Activation of the MAP kinase pathway by the protein kinase raf.   总被引:131,自引:0,他引:131  
Both MAP kinases and the protein kinase p74raf-1 are activated by many growth factors in a c-ras-dependent manner and by oncogenic p21ras. We were therefore interested in determining the relationship between MAP kinases and raf. The MAP kinase ERK2 is activated by expression of oncogenically activated raf, independently of cellular ras. Overexpressed p74raf-1 potentiates activation of ERK2 by EGF and TPA. MAP kinase kinase inactivated by phosphatase 2A treatment is phosphorylated and reactivated by incubation with p74raf-1 immunoprecipitated from phorbol ester-treated cells. We conclude that raf protein kinase is upstream of MAP kinases and is either a MAP kinase kinase kinase or a MAP kinase kinase kinase kinase.  相似文献   

4.
Activation and signaling of the p38 MAP kinase pathway   总被引:104,自引:0,他引:104  
Zarubin T  Han J 《Cell research》2005,15(1):11-18
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.  相似文献   

5.
6.
The newly cloned gene Spin encodes a 30-kDa protein, a well-defined abundant molecule found in mouse oocytes and early embryos. This protein SPIN undergoes metaphase-specific phosphorylation and binds to the spindle. To understand the role of SPIN in oocyte meiosis, oocytes were treated with drugs that affect the cell cycle by activating or inactivating specific kinases. The posttranslational modification of SPIN in the treated oocytes was then investigated by one- and two-dimensional gel electrophoresis. Modification of SPIN is inhibited by treatment with 6-dimethylaminopurine (DMAP), suggesting that SPIN is phosphorylated by a serine-threonine kinase. Furthermore, SPIN from cycloheximide-treated oocytes that lack detectable MAP kinase activity is only partially phosphorylated, indicating that SPIN may be phosphorylated by the MOS/MAP kinase pathway. To confirm this observation, SPIN was analyzed in Mos-null mutant mice lacking MAP kinase activity. Normal posttranslational modification of SPIN did not occur in Mos-null mutant oocytes. In addition, there is reduced association of SPIN with the metaphase I spindle in Mos-null mutant oocytes, as determined by immunohistochemical analysis. These findings suggest that SPIN is a substrate in the MOS/MAP kinase pathway and further that this phosphorylation of SPIN may be essential for its interaction with the spindle. Mol. Reprod. Dev. 50:240–249, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
When ectopically expressed, the serine/threonine kinase Mos can induce oncogenic transformation of somatic cells by direct phosphorylation of MAP kinase/ERK kinase (MEK1), activating the mitogen-activated protein kinases ERK1 and ERK2. On the other hand, overexpression of Mos in C2C12 myoblasts is not transforming. Mos activates myogenic differentiation by promoting heterodimerization of the MyoD/E12 proteins, increasing the expression of myogenic markers and the positive autoregulatory loop of MyoD. In this study, we show that in myogenic cells, the mitogenic and oncogenic signalling from the Mos/MEK/ERK pathway is suppressed by MyoD through the formation of a heterotrimeric complex.  相似文献   

8.
Formin homology 2 domain containing protein (FHOD1), a mammalian formin, regulates cytoskeletal architecture, enhances cell migration, and induces gene expression from the serum response element. In this study, we describe co-precipitation of FHOD1 with components of the ERK MAP kinase pathway while co-precipitation of FHOD1 with p38 MAP kinase and JNK was not observed. In addition, FHOD1 co-localized to lamellipodia with Raf-1 and to stress fibers with MEK. FHOD1-induced gene expression from the serum response element was dependent on ERK MAP kinase activation, and the native skeletal actin promoter were activated by FHOD1 through the SRF site. However, FHOD1-induced stress-fiber formation and gene expression from the skeletal actin promoter was independent of ERK activation. These novel data demonstrate that FHOD1-ERK MAP kinase interaction regulates key aspects of FHOD1 biology.  相似文献   

9.
The Ras–MAP kinase pathway has attracted much attention from academic and pharmaceutical laboratories because of its central role in regulating tumor cell growth and survival, differentiation and angiogenesis. Although the central players in this pathway –Ras, Raf, and MEK – have been well studied, how best to exploit them for therapeutic gain has eluded oncology researchers in the past. Several small-molecule inhibitors that target specific steps of the MAP kinase cascade have recently entered the clinical arena. While we await answers on their ultimate therapeutic use, the availability of translational assays for monitoring target suppression will no doubt play a significant role in optimizing our chances of success.  相似文献   

10.
Two principal kinases, p34cdc2 kinase and MAP kinase play a pivotal role in maturation of mammalian oocytes. In the porcine and bovine oocytes both kinases are activated around the time of germinal vesicle breakdown (GVBD). Butyrolactone I (BL I), a specific inhibitor of cdk kinases, prevents effectively and reversibly resumption of meiosis in the porcine and bovine oocytes. Neither p34cdc2 kinase nor MAP kinase are activated in oocytes inhibited in the GV stage. The bovine oocytes maintained for 48 h in the medium supplemented with BL I, progress subsequently to metaphase II in 91%, their cumuli expand optimally and after in vitro fertilization they possess two pronuclei. When the cdc2 kinase is blocked in the porcine oocytes by BL I, MAP kinase, activated by okadaic acid treatment, is able to substitute cdc2 kinase and induce GVBD. The histone H1 kinase activity sharply decreases in the metaphase II oocytes treated by BL I and one or two female pronuclei are formed. These data indicate that BL I is a useful tool either for the two step in vitro culture of mammalian oocytes or for their activation in nuclear transfer experiments.  相似文献   

11.
12.
The molecular basis by which commonly used signaling pathways are able to elicit tissue-specific responses in multicellular organisms is an important yet poorly understood problem. In this review, we use the receptor tyrosine kinase (RTK)/RAS/MAP kinase signaling cascade as a model to discuss various hypotheses that have been proposed to explain signaling specificity. Specificity can arise at the level of the receptor, through the modulation of signaling kinetics, through the interaction of different signaling pathways, and at the level of downstream signaling components. Mechanisms of specificity used by the RTK/RAS/MAP kinase signaling pathway might apply to other signaling pathways as well, and might help explain how multicellular organisms are able to generate tissues of diverse forms and functions from a small set of common signaling pathways.  相似文献   

13.
You YJ  Kim J  Cobb M  Avery L 《Cell metabolism》2006,3(4):237-245
Starvation activates MAPK in the pharyngeal muscles of C. elegans through a muscarinic acetylcholine receptor, Gqalpha, and nPKC as shown by the following results: (1) Starvation causes phosphorylation of MAPK in pharyngeal muscle. (2) In a sensitized genetic background in which Gqalpha signaling cannot be downregulated, activation of the pathway by a muscarinic agonist causes lethal changes in pharyngeal muscle function. Starvation has identical effects. (3) A muscarinic antagonist blocks the effects of starvation on sensitized muscle. (4) Mutations and drugs that block any step of signaling from the muscarinic receptor to MAPK also block the effects of starvation on sensitized muscle. (5) Overexpression of MAPK in wild-type pharyngeal muscle mimics the effects of muscarinic agonist and of starvation on sensitized muscle. We suggest that, during starvation, the muscarinic pathway to MAPK is activated to change the pharyngeal muscle physiology to enhance ingestion of food when food becomes available.  相似文献   

14.
Qian NX  Russell M  Johnson GL 《Life sciences》1995,56(11-12):945-949
Acetylcholine muscarinic m1 receptors and m2 receptors are predominantly coupled to the heterotrimeric G proteins Gq, 11 and Gi, respectively. Stimulation of the m1 and m2 receptors in different cell types activate the Ras/Raf/MAP kinase pathway. The ability of the m1 receptor to activate the MAP kinase pathway is dependent on the isoforms of adenylyl cyclase expressed in specific cell types. Specific adenylyl cyclases respond to different signals, including calcium and protein kinase C, with increased cAMP synthesis resulting in protein kinase A activation. Stimulation of protein kinase A inhibits Raf and subsequent MAP kinase activation by G protein-coupled receptors and growth factor receptor tyrosine kinases. G protein-coupled receptors can positively and negatively regulate the responsiveness of tyrosine kinase-stimulated response pathways.  相似文献   

15.
16.
In addition to important roles in the regulation of cell growth and cell restitution, both pro- and anti-inflammatory effects have been ascribed to TGFbeta in intestinal epithelial cells. However, the mechanisms involved in TGFbeta-dependent anti-inflammatory activities remain to be determined. In the rat intestinal epithelial cell line IEC-6, TGFbeta attenuated the glucocorticoid-dependent increases in mRNA levels of the acute phase protein gene haptoglobin, and of C/EBP isoforms beta and delta. Supershift assays demonstrated a TGFbeta-mediated decrease in the binding of C/EBP isoforms beta and delta to the haptoA and haptoC C/EBP DNA-binding sites from the haptoglobin promoter. Mutations of both HaptoA and HaptoC sites abolished the glucocorticoid-dependent activation and the TGFbeta-mediated attenuation of the haptoglobin promoter, as assessed by transient transfection assays. TGFbeta induced p42/p44 MAP kinase activities. Treatment with the MEK 1/2 inhibitor PD 98059 abolished TGFbeta attenuation. These results suggest that C/EBP isoforms are involved both in the glucocorticoid-dependent induction and in the TGFbeta-mediated attenuation of haptoglobin expression. Furthermore, p42/p44 MAP kinases may function in a TGFbeta-dependent signaling pathway leading to attenuation of haptoglobin expression.  相似文献   

17.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

18.
The HST7 gene of Candida albicans encodes a protein with structural similarity to MAP kinase kinases. Expression of this gene in Saccharomyces cerevisiae complements disruption of the Ste7 MAP kinase kinase required for both mating in haploid cells and pseudohyphal growth in diploids. However, Hst7 expression does not complement loss of either the Pbs2 (Hog4) MAP kinase kinase required for response to high osmolarity, or loss of the Mkk1 and Mkk2 MAP kinase kinases required for proper cell wall biosynthesis. Intriguingly, HST7 acts as a hyperactive allele of STE7; expression of Hst7 activates the mating pathway even in the absence of upstream signaling components including the Ste7 regulator Ste11, elevates the basal level of the pheromone-inducible FUS1 gene, and amplifies the pseudohyphal growth response in diploid cells. Thus Hst7 appears to be at least partially independent of upstream activators or regulators, but selective in its activity on downstream target MAP kinases. Creation of Hst7/Ste7 hybrid proteins revealed that the C-terminal two-thirds of Hst7, which contains the protein kinase domain, is sufficient to confer this partial independence of upstream activators.  相似文献   

19.
Signal transduction mediated by the single yeast isozyme of protein kinase C (Pkc1p) is essential for the maintenance of cellular integrity in this model eukaryote. The past few years have seen a dramatic increase in our knowledge of the upstream regulatory factors that modulate Pkc1p activity (e.g. Tor2p, Rom1p, Rom2p, Rho1p, Slg1p, Mid2p) and of the downstream targets of the MAP kinase cascade triggered by it (e.g. Rlm1p, SBF complex). The picture that has emerged connects this pathway to a variety of other cellular processes, such as cell cycle progression (Cdc28p, Swi4p), mating (Ste20p), nutrient sensing (Ira1p), calcium homeostasis (calcineurin, Mid2p, Fks2p) and the structural dynamics of the cytoskeleton (Spa1p, Bni1p).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号