首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacteriophage P1 cloning system that permits the isolation and amplification of cloned DNA fragments as large as 100 kbp was described previously. We have now utilized a similar system to generate a 50,000-member human DNA library with DNA inserts ranging in size from 75 to 100 kbp. Two major obstacles were overcome in constructing the library. The first concerned the mcrAB restriction system of Escherichia coli, which degrades DNA containing MeC and interferes with the recovery of cloned human DNA inserts. In the P1 cloning system, the effect of the Mcr restriction activity is to decrease recovery of cloned inserts by about 35-fold when the activity is in the host cell line and by about 3-fold when the activity is in the cells used to prepare the packaging extract. To circumvent this problem we inactivated, by mutation, the McrAB proteins in both components of the cloning system. The second obstacle concerned the preferential cloning of small DNA fragments from a population of fragments ranging in size from 20 to 100 kbp. To deal with this problem we first modified the P1 lysogen used to prepare the in vitro head-tail packaging extract so that it would produce 12 times as many large P1 heads (head capacity about 110 kbp) as small P1 heads (head capacity about 45 kbp). We then restructured the P1 cloning vector so that it could be used to produce vector "arm" fragments that could be ligated to insert DNA at only one end. This prevented the formation of long concatamers consisting of alternating units of vector and insert DNA and prohibited the packaging of small inserts in large phage heads. Using the insert-biased large head extract, the arms vector, and size-selected human DNA fragments, we showed that as much as 90% of recovered transformants contained inserts in the desired high molecular weight range.  相似文献   

2.
The recent completion of the human genome sequence allows genomics research to focus on understanding gene complexity, expression, and regulation. However, the routine-use genomic DNA expression systems required to investigate these phenomena are not well developed. Bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) have proved excellent tools for the human genome sequencing projects. We describe a system to rapidly and efficiently deliver and express BAC and PAC library clones in human and mouse cells by converting them into infectious amplicon vectors. We show packaging and intact delivery of genomic inserts of >100 kilobases with efficiencies of up to 100%. To demonstrate that genomic loci transferred in this way are functional, the complete human hypoxanthine phosphoribosyltransferase (HPRT) locus contained within a 115-kilobase BAC insert was shown to be expressed when delivered by infection into both a human HPRT-deficient fibroblast cell line and a mouse primary hepatocyte culture derived from Hprt-/- mice. Efficient gene delivery to primary cells is especially important, as these cells cannot be expanded using antibiotic selection. This work is the first demonstration of infectious delivery and expression of genomic DNA sequences of >100 kilobases, a technique that may prove useful for analyzing gene expression from the human genome.  相似文献   

3.
We describe the generation of transgenic mouse lines expressing Cre recombinase in epithelial cells of the lactating mammary gland. As an expression vector, we used a P1-derived bacterial artificial chromosome (PAC) which harbors the gene for the secretory milk protein, whey acidic protein (Wap). Using homologous recombination in E. coli, the PAC was modified to carry the improved coding sequence of Cre recombinase (iCre). Transgenic lines carrying the WAPiCre PAC express Cre recombinase efficiently in the majority of mammary epithelial cells upon lactation. Of only four transgenic lines produced, three express Cre recombinase to a high efficiency. LoxP-flanked DNA sequences are recombined in virtually all epithelial cells of WAPiCre transgenic mice at lactation day 3.  相似文献   

4.
We have used transgenic mouse technology to establish immortalized hepatoma cell lines stably secreting heterologous proteins, such as human α1-antitrypsin and human factor IX. Hepatocyte-specific regulatory DNA sequences were used to target both the expression of anonc gene and the gene coding for the human protein to the liver of transgenic mice which eventually developed hepatocellular carcinomas. Tumour cells were subsequently established as permanent cell lines, which maintained a differentiated phenotype under specific culture conditions, being capable of producing biologically active and correctly processed human α1-antitrypsin and factor IX. Moreover, a preliminary analysis has shown that certain cell lines express elevated total cytochrome P450 activity. These cells could therefore represent a useful alternative to the use of animals or primary cultures in drug safety testing.  相似文献   

5.
BACKGROUND: The delivery of a complete genomic DNA locus in vivo may prove advantageous for complementation gene therapy, especially when physiological regulation of gene expression is desirable. Hydrodynamic tail vein injection has been shown to be a highly efficient means of non-viral delivery of plasmid DNA to the liver. Here, we apply hydrodynamic tail vein injection to deliver and express large genomic DNA inserts > 100 kb in vivo. METHODS: Firstly, a size series (12-172 kb) of bacterial artificial chromosome (BAC) plasmids, carrying human genomic DNA inserts, episomal retention elements, and the enhanced green fluorescent protein (EGFP) reporter gene, was delivered to mice by hydrodynamic tail vein injection. Secondly, an episomal BAC vector carrying the whole genomic DNA locus of the human low-density lipoprotein receptor (LDLR) gene, and an expression cassette for the LacZ reporter gene, was delivered by the same method. RESULTS: We show that the efficiency of delivery is independent of vector size, when an equal number of plasmid molecules are used. We also show, by LacZ reporter gene analysis, that BAC delivery within the liver is widespread. Finally, BAC-end PCR, RT-PCR and immunohistochemistry demonstrate plasmid retention and long-term expression (4 months) of human LDLR in transfected hepatocytes. CONCLUSION: This is the first demonstration of somatic delivery and long-term expression of a genomic DNA transgene > 100 kb in vivo and shows that hydrodynamic tail vein injection can be used to deliver and express large genomic DNA transgenes in the liver.  相似文献   

6.
Members of the Bcl-2 family serve as central checkpoints for cell death regulation, and overexpression of Bcl-2 is known to inhibit apoptosis in many cell types. To determine whether targeted expression of Bcl-2 could be used to protect female germ cells from apoptosis, we generated transgenic mice expressing fully functional human Bcl-2 protein only in oocytes. Transgenic mice were produced using a previously characterized 480-bp fragment of the mouse zona pellucida protein-3 (ZP3) gene 5'-flanking region to direct oocyte-specific expression of a human bcl-2 complementary DNA. Immunohistochemical analyses using a human Bcl-2-specific antibody showed that transgene expression was restricted to growing oocytes and was not observed in the surrounding ovarian somatic cells or in any other nonovarian tissues. Histomorphometric analyses revealed that ovaries collected from transgenic female mice possessed significantly fewer atretic small preantral follicles compared with wild-type sisters, resulting in a larger population of healthy maturing follicles per ovary. However, the number of oocytes ovulated in response to exogenous gonadotropin priming and the number of pups per litter were not significantly different among wild-type vs. transgenic female mice. Nonetheless, oocytes obtained from transgenic mice and cultured in vitro were found to be resistant to spontaneous and anticancer drug-induced apoptosis. We conclude that targeted expression of Bcl-2 only in oocytes can be achieved as a means to convey resistance of the female germ line to naturally occurring and chemotherapy-induced apoptosis.  相似文献   

7.
Manipulation of genomic inserts cloned into the bacteriophage P1 vector is hindered by the large size of the inserts. We have used co-transformation mediated recombination between the yeast-bacteria shuttle vector, pClasper, and various P1 clones to transfer the entire insert from the P1 into pClasper. This results in the insert being stably maintained in yeast, facilitating mutagenesis by homologous recombination. The recombinant plasmid can subsequently be transferred to and stably maintained in bacteria for efficient plasmid preparation. This method can also be applied to inserts from P1 artificial chromosome or bacterial artificial chromosome vectors.  相似文献   

8.
The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein   总被引:23,自引:0,他引:23  
The development of simultaneous resistance to multiple drugs in cultured cells occurs after selection for resistance to single agents. This multidrug-resistance phenotype is thought to mimic multidrug-resistance in human tumors treated with chemotherapy. Both the expression of a membrane protein, termed P170 or P-glycoprotein, and the expression of a cloned DNA fragment, termed mdr1, have been shown independently to be associated with multidrug-resistance in cultured cells. In this work, we show that human KB carcinoma cells which express the mdr1 gene also express P-glycoprotein, and that cDNAs encoding P-glycoprotein cross-hybridize with mdr1 cDNAs. Thus, the mdr1 gene codes for P-glycoprotein.  相似文献   

9.
Gene targeting in the mouse is a powerful tool to study mammalian gene function. The possibility to efficiently introduce somatic mutations in a given gene, at a chosen time and/or in a given cell type will further improve such studies, and will facilitate the generation of animal models for human diseases. To create targeted somatic mutations in the epidermis, we established transgenic mice expressing the bacteriophage P1 Cre recombinase or the tamoxifen-dependent Cre-ER(T2) recombinase under the control of the human keratin 14 (K14) promoter. We show that LoxP flanked (floxed) DNA segments were efficiently excised in epidermal keratinocytes of K14-Cre transgenic mice. Furthermore, Tamoxifen administration to adult K14-Cre-ER(T2) mice efficiently induced recombination in the basal keratinocytes, whereas no background recombination was detected in the absence of ligand treatment. These two transgenic lines should be very useful to analyse the functional role of a number of genes expressed in keratinocytes.  相似文献   

10.
In a previous study, we demonstrated that transgenic mice that express Borna disease virus (BDV) phosphoprotein (P) in astrocytes show striking neurobehavioral abnormalities resembling those in BDV-infected animals. To understand the molecular disturbances induced by the expression of P in astrocytes, we performed microarray analysis with cultured astroglial cells transiently expressing P. We showed that expression of insulin-like growth factor binding protein 3 mRNA increases not only in P-expressing cultured cells but also in astrocytes from the cerebella of P transgenic mice (P-Tg). Furthermore, we demonstrated that insulin-like growth factor signaling is disturbed in the P-Tg cerebellum, a factor that might be involved in the increased vulnerability of Purkinje cell neurons in the brain.  相似文献   

11.
A recombinant adenovirus (Ad) expressing Cre recombinase derived from bacteriophage P1 was constructed. To assay the Cre activity in mammalian cells, another recombinant Ad bearing an on/off-switching reporter unit, where a LacZ-expression unit can be activated by the Cre-mediated excisional deletion of an interposed stuffer DNA, was also constructed. Co-infection experiments together with the Cre-expressing and the reporter recombinant Ads showed that the Cre-mediated switching of gene expression was detected in nearly 100% of cultured CV1, HeLa and Jurkat cells. These results suggest that the recombinant Ad efficiently expressed functional Cre and offers a basis for establishing a powerful on/off switching strategy of gene expression in cultured mammalian cells and presumably in transgenic animals. The method is also applicable to construction of recombinant Ad bearing a gene the expression of which is deleterious to propagation of recombinant Ad.  相似文献   

12.
Knockout mice lacking steroidogenic factor 1 (SF-1, officially designated Nr5a1) have a complex phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and structural abnormalities of the ventromedial hypothalamic nucleus. To explore further how SF-1 regulates endocrine function, we used bacterial artificial chromosome transgenesis to develop a lineage marker for SF-1-expressing cells. A genomic fragment containing 50 kb of the mouse Nr5a1 gene was used to target enhanced green fluorescent protein (eGFP) in transgenic mice. These sequences directed eGFP to multiple cell lineages that express SF-1, including steroidogenic cells of the adrenal cortex, testes, and ovaries, neurons of the ventromedial hypothalamic nucleus, and reticuloendothelial cells of the spleen. Despite the proven role of SF-1 in gonadotrope function, eGFP was not expressed in the anterior pituitary. These experiments show that 50 kb of the mouse Nr5a1 gene can target transgenic expression to multiple cell lineages that normally express SF-1. The SF-1/eGFP transgenic mice will facilitate approaches such as fluorescence-activated cell sorting of eGFP-positive cells and DNA microarray analyses to expand our understanding of the multiple actions of SF-1 in endocrine development and function.  相似文献   

13.
目的:建立表达乙肝病毒受体人ASGPR的转基因小鼠。方法:克隆人的脱唾液酸糖蛋白受体(ASGPR)两个亚基的cDNA,连入PCAGGS构建转基因表达载体,以显微共注射的方法将两种各3.9kb的转基因片段引入小鼠的受精卵。采用PCR、Southern印迹、RT-PCR、Western印迹的方法对转基因小鼠进行鉴定。结果与结论:获得了在小鼠肝脏组织中共表达有乙肝病毒(HBV)受体ASGPR H1和ASGPR H2的一个转基因小鼠系,可为HBV的研究提供一种良好的感染动物模型。  相似文献   

14.
The Purkinje neuron, one of the most fascinating components of the cerebellar cortex, is involved in motor learning, motor coordination, and cognitive function. Purkinje cell protein 2 (Pcp2/L7) expression is highly restricted to Purkinje and retinal bipolar cells, where it has been exploited to enable highly specific, Cre recombinase-mediated, site-specific recombination. Previous studies showed that mice carrying a Cre transgene produced by insertion of Cre cDNA into a small 2.88-kb Pcp2 DNA fragment expressed Cre in Purkinje cells; however, some Cre activity was also observed outside the target tissues. Here, we used Red-mediated recombineering to insert Cre cDNA into a 173-kb BAC carrying the entire intact Pcp2 gene, and characterize the resultant BAC/Cre transgenic mice for Cre expression. We show that BAC/Cre transgenic mice have exclusive Cre expression in Purkinje and bipolar cells and nowhere else. These mice will facilitate Purkinje cell and retinal bipolar cell-specific genetic manipulation.  相似文献   

15.
The generation of functional transgenes via microinjection of overlapping DNA fragments has previously been reported to be successful, but it is still not a widely applied approach. Here we show that the method is very reliable, and should be considered, in case a single large insert clone of the desired gene is not available. In the present study, two large DNA fragments consisting of overlapping cosmids, together constituting the human very low density lipoprotein receptor (VLDLR) gene (35kb), were used to generate VLDLR transgenic (VLDLR-Tg) mice. Three transgenic founders were born, of which two (strain #2 and #3) generated transgenic offspring. Using Fiber-FISH analysis, the integration site was shown to contain at least 44 and 64 DNA fragments in mouse strains #2 and #3, respectively. This copy number resulted in integration sites of 1.5 and 2.5 megabase in size. Notably, over 90% of the fragments in both mouse strains #2 and #3 were flanked by their complementary fragment. In line with this observation, Southern blot analysis demonstrated that the correct recombination between fragments predominated in the transgenic insertion. Human VLDLR expression was detected in testis, kidney and brain of both mouse strains. Since this pattern did not parallel the endogenous VLDLR expression, some crucial regulatory elements were probably not present in the cosmid clones. Human VLDLR expression in testis was detected in germ cells up to the meiotic stage by in situ mRNA analysis. Remarkably, in the F1 generation of both VLDLR-Tg mouse strains the testis was atrophic and giant cells were detected in the semineferous tubuli. Furthermore, male VLDLR-Tg mice transmitted the transgene to their progeny with low frequencies. This could imply that VLDLR overexpression in the germ cells disturbed spermatogenesis.  相似文献   

16.
Immortalized retinal neurons have been established in tissue culture from retinal tumors arising in transgenic mice. The mice carry the SV40 T-antigen under the control of 5' flanking sequences from the human phenylethanolamine N-methyltransferase (PNMT) gene in order to target oncogene expression to adrenergic cell types. The retinal cultures contain a proliferation population of T-antigen-positive cells with a neuronal morphology that includes formation of extensive neuritic processes. We identified the cells as amacrine-derived neurons by immunofluorescence using the cell-specific monoclonal antibodies VC1.1 and HPC-1. The cells also express all three neurofilament subunits and GAP-43. These results indicate that CNS neurons can be transformed in transgenic animals to generate cultured cells with many properties of mature neurons.  相似文献   

17.
18.
19.
The H2 allele of APOC1, giving rise to increased gene expression of apolipoprotein C-I (apoC-I), is in genetic disequilibrium with the APOE4 allele and may provide a major risk factor for Alzheimer's disease (AD). We found that apoC-I protein is present in astrocytes and endothelial cells within hippocampal regions in both human control and AD brains. Interestingly, apoC-I colocalized with beta-amyloid (Abeta) in plaques in AD brains, and in vitro experiments revealed that aggregation of Abeta was delayed in the presence of apoC-I. Moreover, apoC-I was found to exacerbate the soluble Abeta oligomer-induced neuronal death. To establish a potential role for apoC-I in cognitive functions, we used human (h) APOC1(+/0) transgenic mice that express APOC1 mRNA throughout their brains and apoC-I protein in astrocytes and endothelial cells. The hAPOC1(+/0) mice displayed impaired hippocampal-dependent learning and memory functions compared with their wild-type littermates, as judged from their performance in the object recognition task (P = 0.012) and in the Morris water maze task (P = 0.010). ApoC-I may affect learning as a result of its inhibitory properties toward apoE-dependent lipid metabolism. However, no differences in brain mRNA or protein levels of endogenous apoE were detected between transgenic and wild-type mice. In conclusion, human apoC-I expression impairs cognitive functions in mice independent of apoE expression, which supports the potential of a modulatory role for apoC-I during the development of AD.  相似文献   

20.
Cell type-specific expression of the human renin gene.   总被引:2,自引:0,他引:2  
We have previously produced transgenic mice carrying the human renin gene, whose expression is regulated in a tissue-specific manner. In the present study, we further characterized expression of the transgene. Northern blot analysis showed that the human renin gene is expressed in the kidney but not in the liver of two lines of transgenic mice with 10 and 50 copies of the transgene, suggesting that the integrated copy number of the human renin gene does not influence the dominant-renal expression pattern. Immunohistochemical study using a monoclonal antibody specific for human renin demonstrated that expression of human renin in the transgenic mouse kidney is confined to the epithelioid juxtaglomerular cells. Transfection experiments indicated that the chloramphenicol acetyltransferase fusion gene containing the 3-kb upstream sequences of the renin gene is activated only in human epithelioid embryonic 293 cells derived from kidney but not in human HepG2 cells from liver. These findings suggest that transfer of the cloned renin gene into mice and in vitro cultured cell lines can give rise to cell type-specific expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号