首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Distillery wastewater from barley-shochu making was anaerobically treated by a single upflow anaerobic sludge blanket (UASB), and stable operation at a volumetric TOC loading rate of 3 g/l·d could be attained by diluting raw wastewater to give a TOC concentration of less than 6,000 mg/l (18,000 mg/l as CODer). When the distribution of the concentrations of aliphatic acids at various levels within the reactor was investigated, it was found that the methanogenic gasification reaction did not occur in the sludge blanket of the reactor. Distillery wastewater from barley-shochu making with various TOC concentrations was preliminary adjusted to pH 7 and treated by a single passage without circulation of effluent to the bottom of the reactor. As a result, a maximum TOC removal rate (Vmax) of 28.5 g/l·d and a saturation constant (Ks) of 0.63 g/l were obtained.  相似文献   

2.
Anaerobic treatment of wastewater with a high salt content generated during a pickled-plum manufacturing process (TOC, 14g/l; ash, 150g/l; pH 2.7, hereafter called pickled-plum effluent) was investigated for its effect on the high salt content of the wastewater. The synthetic wastewater, including NaCl up to 30g/l, was treated anaerobically by a draw and fill method (treatment temperature, 37°C; volumetric loading rate of organic matter, 2g/l·d). The TOC removal efficiency and rate of gas evolution then gradually decreased as salt content increased, although stable operation was maintained. At NaCl concentrations above 30g/l, TOC removal efficiency decreased rapidly and stable operation could not be maintained. Five-fold-diluted pickled-plum effluent was treated by the same method at a volumetric TOC loading rate of 2.9g/l·d with a TOC removal efficiency of 71%. Five-fold-diluted pickled-plum effluent was also treated in an anaerobic fluidized-bed reactor (AFBR) at a maximum volumetric TOC loading rate of 3.0g/l·d, which gave almost the same results as the draw and fill method. However, ten-fold-diluted pickled-plum effluent could be treated in the AFBR at a maximum volumetric TOC loading rate of 11.1g/l·d with a TOC removal efficiency of 84.6%. The red pigment in the pickled-plum effluent was completely decolorized by the anaerobic treatment.  相似文献   

3.
Propionate and NH4+ were accumulated in the effluent during anaerobic treatment of five-fold diluted distillery wastewater from shochu making. Propionate could be removed efficiently during biological denitrification by the addition of NO3 (4.2 g/l) to the anaerobically treated wastewater. At a hydraulic retention time of more than 2 h, a TOC removal efficiency of 90% could be achieved. The wastewater was then treated aerobically by biological nitrification. With a hydraulic retention time of more than 14 h the efficiency of reduction of NH4+ could be maintained above 97%. In order to reduce the amount of NO3 addition necessary for the removal of propionate, simultaneous removal of propionate and NH4+ was studied by recirculating the effluent from a nitrification process to a denitrification process using denitrification and nitrification reactors connected in series. At a recirculation ratio of 2, the amount of NO3 that had to be added was reduced to 0.3 g/l of anaerobically treated wastewater, which corresponds to 6.9% of the theoretical value. Under the same conditions except for the addition of NO3 at 1.0 g/l, TOC and BOD in the effluent from the nitrification were 23 and 5 mg/l respectively, which are sufficiently low to allow discharge into river water. Moreover, the NO3 concentration in the effluent decreased with increases in the recirculation ratio.  相似文献   

4.
An anaerobic plate-column reactor, developed to retain a high concentration of biomass, was studied using starch-containing synthetic wastewaters with regard to its start-up profile and the effects of TOC-loading rate, hydraulic retention time (HRT), and temperature in a steasy state. Each operation was started up at an initial biomass concentration of ca. 0.5 mg-N/ml (ca. 5 mg-VSS/ml), 20°C, an HRT of 30 h, and a TOC-loading rate of 0.8 g/l/d. The removal defficiency of dissolved organic carbon exceeded 90% after 29 d. The efficiency reached a steady state at 98% removal after 116 d. The biomass concentration in the reactor was 2.3 mg-N/ml after 154 d. Circulation of effluent at a ratio of 1 gave a lower removal efficiency and a lower biomass concentration than the same reactor without circulation. The effect of TOC-loading rate was studied at an HRT of 30 h, 20°C, and removal efficiencies were found 91% at 1.6 g/l/d and 77% at 3.2 g/l/d. The effect of HRT was studied at a TOC-loading rate of 0.8 g/l/d, 20°C, and removal efficiencies 91% at an HRT of 12 h and 72% at an HRT of 6 h.  相似文献   

5.
Low strength wastewaters can be those with chemical oxygen demand (COD) below 2,000 mg/l. The anaerobic treatment of such wastewaters has not been fully explored so far. The suboptimal reaction rates with low substrate concentrations, and the presence of dissolved oxygen in the influent are regarded as possible constraints. In this study, the treatment of low strength soluble wastewaters containing ethanol or whey was studied in lab-scale upflow anaerobic sludged bed (UASB) reactors at 30°C. The high treatment performance obtained demonstrates that UASB reactors are viable for treating both types of wastewaters at low COD concentrations. The treatment of the ethanol containing wastewater resulted in COD removal efficiencies exceeding 95% at organic loading rates (OLR) between 0.3 to 6.8 g COD/l-d with influent concentrations in the range of 422 to 943 mg COD/l. In the case of the more complex whey containing wastewater, COD removal efficiencies exceeded 86% at OLRs up to 3.9 g COD/l·, as long as the COD influent was above 630 mg/l. Lowering the COD influent resulted in decreased efficiency with sharper decrease at values below 200 mg/l. Acidification instead of methanogenesis was found to be the rate limiting step in the COD removal at low concentrations, which was not the case when treating ethanol. The effect of dissolved oxygen in the influent as a potential danger in anaerobic treatment was investigated in reactors fed with and without dissolved oxygen. Compared with the control reactor, the reactor receiving oxygen showed no detrimental effects in the treatment performance. Thus, the presence of dissolved oxygen in dilute wastewaters is expected to be of minor importance in practice.  相似文献   

6.
《Process Biochemistry》2004,39(10):1257-1267
A comparative study of a fermentation process for total volatile fatty acids (TVFA) production using pilot-scale fixed-bed (FAS) and suspended biomass (FER) reactors in which similar operational conditions was carried out. The influence of the changes of ambient temperatures at fixed operational conditions was also studied. Oxidation–reduction potential (ORP) increased and effluent pH decreased as the hydraulic retention time (HRT) decreased, which was favourable for TVFA production. Equations describing the ORP and pH variations with the HRT were obtained. ORP variation with HRT for FAS and FER reactors followed a logarithmic function with a regression coefficient, R2, equal to 0.98. The variations of pH with HRT followed polynomial functions with regression coefficients of 0.96 and 0.98 for FAS and FER reactors, respectively. Hydrolysis process increased with the experiment duration. At the beginning of the experiment, effluent soluble COD (SCOD) decreased with respect to the influent but further effluent SCOD increased showing higher values compared to the influent. Cold temperatures were more favourable than summer temperatures for the accumulation of TVFA at the liquid effluent. The FAS reactor was more effective in the production of TVFA than the FER reactor. The maximum yields of TVFA were obtained at an organic volumetric loading rate (BV) of 1.9 g COD/l per day, corresponding to an HRT of 3.4 h, for both reactors. A maximum increase of ammonia and phosphorus was observed at the maximum value of HRT coinciding with an increase of pH and a decrease of ORP, as could be previously observed. The average P/SCOD ratio for the influent and effluent were 0.06 and 0.05, respectively, for FAS and FER reactors. The average Ammonia/SCOD ratio for the influent and effluent were 0.15 and 0.14, respectively. These results demonstrate that effluent quality was improved by the treatment employed in case a further process of nutrient removal is carried out.  相似文献   

7.
Performance of anaerobic upflow fixed film reactors for biomethanation of high-strength cheese whey using different support material such as charcoal, gravel, brick pieces, PVC pieces and pumice stones at 37°C has been studied. Among them the charcoal fixed film reactor showed the best performance when operated at 2 d hydraulic retention times (HRT), achieving maximum COD removal of 81% (COD influent=70 g/l) and improved total gas production (6.7 l/d/l digester) with high methane content (72%).  相似文献   

8.
The growth of granules on a phenol synthetic medium and the methanogenic fermentation of industrial phenolic wastewater from a steel factory in an upflow anaerobic sludge blanket (UASB) reactor were investigated. Total granular sludge concentration retained in the UASB reactor was 6.7 g MLSS/l (6.0 g MLVSS/l) during the 10 months' operation on the phenol synthetic medium. This realized a maximum phenol removal rate of 2.2 g/l·d (phenol concentration of influent = 500 mg/l), which corresponded to 5.2 g COD/l·d at space velocity (SV) of 4.4 d−1. The granules formed were of relatively small size ranging from 0.61 to 0.77 mm, and had a relatively low density of 0.013–0.023 g MLVSS/cm3 and low specific gravity (1.11) due to very low ash content (8.7–11.9%). Electron microscopic analysis showed that Methanothrix spp. appeared dominantly on the granule surface as well as within it. The specific metabolic activities of bacterial trophic groups were the highest for H2 followed by acetate, benzoate, phenol, and propionate. In the case of industrial phenolic wastewater, although phenol efficiency was only 50% at SV of 0.4 d−1, when the wastewater was diluted twofold and the treated wastewater was recycled at SV of 7.3 d−1, the removal efficiencies of phenol and CODcr were restored to 90% (influent=400 mg/l) and 80% (influent=5,000 mg/l), respectively. It was suggested that recycling of the treated wastewater might be improved by partly degrading unknown toxic compounds contained in phenolic wastewater.  相似文献   

9.
实验室模拟高负荷SPAC厌氧反应器运行   总被引:6,自引:1,他引:5  
采用模拟废水, 对新型高负荷螺旋式自循环(Spiral automatic circulation, SPAC)厌氧反应器的运行性能进行了实验室模拟研究。结果表明: 在30oC, 水力停留时间(HRT)为12 h, 进水COD浓度从8000 mg/L升至20 000 mg/L的条件下, 反应器的COD去除率为91.1%~95.7%, 平均去除率为93.6%。在进水浓度为20 000 mg/L, HRT由5.95 h缩短至1.57 h的工况下, COD去除率从96.0%降低至78.7%, 反应器达到最高容积负荷率306 g COD/(L·d), 最大容积COD去除率240 g/(L·d), 最高容积产气率131 L/(L·d)。该反应器对基质浓度的连续提升具有良好的适应能力。进水COD浓度由8000 mg/L提升至20 000 mg/L时, 出水COD浓度一直处在较低水平(平均为852?mg/L), 容积COD去除率和容积产气率分别提高162%和119%。该反应器对HRT的连续缩短也有良好的适应能力。HRT由5.95 h缩短至1.57 h时,反应器容积COD去除率和容积产气率分别升高191%和195%。  相似文献   

10.
In order to improve the gas evolution rate during anaerobic digestion of coffee waste by two-phase methane fermentation with slurry-state liquefaction, the liquefaction and gasification processes were separately investigated. In the liquefaction process (including the acidification process), treatment at a pH above 6 had no major effects on the liquefaction and acidification rates. However, the VFA production rates were 880 and 320 mg/l·d during mesophilic (37°C) and thermophilic (53°C) liquefaction, respectively. Mesophilic conditions were superior to thermophilic conditions in the liquefaction. With respect to the gasification process, a high TOC volumetric loading rate of 21 g/l·d was achieved during thermophilic gasification. However, the mesophilic gasification did not yield stable data, even at a low TOC volumetric loading rate of 2 g/l·d. The gas yield was 1.7 l/g TOC consumed during thermophilic gasification. The thermophilic liquefaction and thermophilic gasification reactors were connected in series and a two-phase experiment was conducted with the reactors at various volumetric ratios. The maximum gas evolution rate of 1.43 l/l·d was achieved with a combination of a gasification reactor with a 0.45l working volume and liquefaction reactor with a 2l working volume. This rate was 1.7 times higher than the rate obtained in a previous study.  相似文献   

11.
Phototrophic bacterial cells in the effluent from a lighted upflow anaerobic sludge blanket reactor supplied with a medium containing 142 mg S (as SO4 2–) l–1 accumulated a 6.8% w/w oleic acid content in cells and 19 mg cell-bound oleic acid l–1 in the effluent. Pure cultures of Rhodopseudomonas palustris and Blastochloris sulfoviridis isolated from the effluent also accumulated 5.1 and 6.4% w/w oleic acid contents in cells, respectively. The oleic acid content in the cells recovered from the LUASB reactor effluent was related to the phototrophic bacterial population in the LUASB reactor. The inverse relationship was observed in the LUASB reactor between phototrophic bacterial growth and sulfate concentration in the influent.  相似文献   

12.
Summary A high-strength baker's yeast effluent was anaerobically treated using a hybrid digester under mesophilic conditions. The digester was subjected to a substrate COD concentration of 21 767 mg/I at three different HRTs. At HRTs of 3.0, 2.0 and 1.0 d, the digester reduced the substrate COD by 76, 61 and 33%, respectively. Although the best COD removal was obtained at an OLR of 7.30 kg COD/m3.d, the highest COD removal rate (6.51 kg COD/M3-d) was found at 10.65 kg COD/m3.d at an HRT of 2.0 d. The low methane yield and VFA accumulation found in the digester effluent, indicated inhibition on methanogenic level and this was considered to be the rate-limiting step during the anaerobic treatment process. The overall efficiency of the digester indicated that this digester design and support medium was suitable for the treatment of a high-strength, sulfate-rich baker's yeast effluent.  相似文献   

13.
Selenium at high levels may cause adverse health effects on human beings and endanger aquatic lives due to its toxicity. Se(VI) reduction in continuous-flow reactors packed with Shigella fergusonii strain TB42616 immobilized by Ca2+-alginate gel beads was investigated under various hydraulic retention times (HRT) and influent Se(VI) concentrations. Removal efficiency up to 98.8 % was achieved after 96 days operation under an HRT of 5 days and an influent Se(VI) concentration of 400 mg/L. The results showed that the overall selenium removal efficiency was affected by the HRT and the bed height of the reactor but not the influent Se(VI) concentration. The steady-state data were analyzed using a mathematical model and Monod-type kinetics. Biokinetic parameters of half-velocity constants and maximum specific reduction rates were optimized using steady-state data obtained under a range of HRTs (0.73–5.0 days) at a constant influent Se(VI) concentration of 50 mg/L. The model was validated using steady-state data obtained under influent Se(VI) concentrations ranging from 10 to 400 mg/L while maintaining the HRT at 5.0 days. The high correlation coefficients between model calculated Se(VI) and Se(IV) concentrations and the experimental data indicate that the model is robust to predict the performance of the continuous-flow bioreactor.  相似文献   

14.
Summary Neutralizing requirements for the anaerobic treatment of an acidic petrochemical effluent in a downflow anaerobic fixed bed reactor were examined. Neutralization (pH 6.0 with NaOH) of the effluent prior to digestion resulted in a Na+ concentration of over 3 g/l which was detrimental. Decreasing the Na+ concentration and subsequent replacement of NaOH by a mixture of Ca(OH)2, NaOH and KOH resulted in an increase in reactor performance. The addition of different alkalines resulted in the best loading rates thusfar applied in the anaerobic treatment of this petrochemical effluent. During the final stages of this study, the effluent (pH 3.95) was treated at a loading rate of 10.37 kg COD/m3. d (HRT=1.35 d) with more than 94% fatty acid removal.  相似文献   

15.
固定载体卧式厌氧反应器处理糖蜜废水的快速启动   总被引:1,自引:0,他引:1  
为高效处理高浓度有机废水而设计了固定载体卧式厌氧反应器R1和R2, 它是厌氧折流板反应器(ABR)的改进, 以活性炭纤维作为生物膜载体固定并充当反应器的折流板, 在实验室规模上对R1和R2处理糖蜜废水进行快速启动运行。HRT和ORL是影响R1和R2稳定高效运行及启动的2个重要工艺参数。实验证明: HRT为2 d时, 反应器运行最佳。在第30天时, R1的COD去除率达到84.88%, R2达到81.72%。随着进水ORL由1.25 kg/(m3·d)提升到10 kg/(m3·d), 沼气容积产气率由0.35 L/(L·d)逐渐增加到4.98 L/(L·d)。进水pH值为3.9?4.5之间, 整个启动运行过程中, 未调节pH值, R1和R2的出水pH值均在6.7?7.6之间, 2个反应器均有较强的抗酸能力, R1的pH波动更为平缓。在整个实验过程中, 污泥流失量小, 没有发生堵塞现象, 在处理酸性高浓度有机废水时, 2个反应器均表现出较强的抗负荷冲击能力。  相似文献   

16.
Summary An anaerobic hybrid reactor was used in the anaerobic treatment of an acidic petrochemical effluent. An organic loading rate of 20.04 kg COD/(m3d) at a HRT of 17 hours was obtained with a volatile fatty acid removal of 91%, and COD removal of 84%. A final reactor effluent containing 44 mg/l ammonia nitrogen and 12.3 mg/l PO4-P was produced.  相似文献   

17.
Waste water, derived from the reprocessing of used emulsions or suspensions, contains high concentrations of emulsified mineral oil and stabilizers, as well as different additives that are needed during the treatment process. Two stirred-tank reactors and two fixed-bed reactors were used to study the biodegradation of these waste-water compounds during two-stage biological treatment. The waste water was first proceesed in an activated sludge reactor to remove easily biodegradable substances. The effluent from the first stage was treated in three parallel operating reactors: an activated sludge tank containing different amounts of powdered activated carbon (PAC, between 0 and 2%), an upflow anaerobic fixed-bed reactor and an aerobic fixed-bed reactor (trickling filter). The results from the continuous treatment were compared with laboratory batch experiments. About 60% of the influent TOC was reduced by the first activated sludge treatment. The removal efficiency increased to about 70% by using a second activated sludge stage. This degradation was comparable to the maximum degree of degradation measured in laboratory batch experiments. PAC addition to the second activated sludge tank resulted in increased degradation rates. The removal efficiency increased to about 76% when 0.1% PAC was added and to 96% with 1% PAC. The removal efficiency decreased to 84% when the proportion of PAC was further increased to 2%. Variations in the amount of PAC addition per unit influent volume in the range of 50 and 200 mg/l had no significant effect on the TOC removal. Degradation models based on the MONOD-type equation were found to be in close correlation with the results obtained from batch experiments. However, the biological removal rates measured in batch experiments did not reflect the removal capacity determined in continuous operating treatment systems.  相似文献   

18.
A submerged bio-film process was studied as a tertiary treatment to decrease the BOD of secondary effluent from a combined chemical-biological treatment of high-strength wastewater to below the permitted limit (30 mg/l) for waste facilities in Japan. The operational conditions to keep the final effluent below 30 mg/l of BOD were as follows: the influent BOD to the bio-film tank should be under 300 mg/l and a BOD-surface loading should be below 2 g/m2/d. The influent pH of 9.0–12.5 did not affect the treatment efficiency unfavorably. Acclimation is the compensating factor for variations of pH in this process. Removal rates of suspended solids were not influenced by BOD-surface loading. The calculated BOD removal coefficient was 2.57 × 10−5 when the influent BOD was below 300 mg/l.  相似文献   

19.
亚硝酸盐型同步厌氧生物脱氮除硫工艺的运行性能   总被引:1,自引:0,他引:1  
蔡靖  郑平 《生物工程学报》2009,25(11):1684-1689
采用上流式厌氧污泥床(UASB)反应器研究了亚硝酸盐型同步厌氧生物脱氮除硫工艺的性能。该工艺具有很高的硫化物和亚硝酸盐转化潜能,最大容积硫化物去除率和容积硝酸盐去除率分别为13.4kg/(m3·d)和2.3kg/(m3·d);所能耐受的最大进水硫化物和亚硝酸盐浓度分别为880mg/L和252.7mg/L;最适进水硫化物和亚硝酸盐浓度分别为460mg/L和132.3mg/L,最适水力停留时间为4h。硫化物和亚硝酸盐的表观半抑制浓度分别为403.9mg/L和120.8mg/L,两者之间的联合毒性为拮抗作用。  相似文献   

20.
Treatment of simulated wastewater containing 40 mg/l of 4-chlorophenol (4-CP) was carried out in an upflow anaerobic sludge blanket (UASB) reactor under methanogenic condition. The performance of this test UASB reactor was evaluated in terms of 4-CP removal. Hydraulic retention time (HRT) and substrate:co-substrate ratio for the 4-CP removal was optimized by varying the influent flow rate (13-34.7 ml/min) and sodium acetate concentration (2-5 g/l), respectively. A control UASB reactor, which was not exposed to 4-CP was also operated under similar conditions. Organic loading rate (OLR) was varied in the range of 2-5.3 kg/m(3)/d and 1.7-4.2 kg/m(3)/d, respectively, for HRT and substrate:co-substrate ratio studies, respectively. The optimum HRT and substrate:co-substrate ratio for the removal of 4-CP was 12h and 1:75, respectively. Removal of 4-CP achieved at optimum HRT and substrate:co-substrate ratio was 88.3+/-0.7%. Removal of 4-CP occurred through dehalogenation and caused increase in chloride ion concentration in the effluent by 0.23-0.27 mg/mg 4-CP removed. The ring cleavage test showed the ortho mode of ring cleavage of 4-CP. Change in the elemental composition of the anaerobic biomass of UASB reactors was observed during the study period. Concentration of Ca(2+) increased in the biomass and this could be attributed to the biosoftening. Specific methanogenic activity of the sludge of control and test UASB reactor was 0.832 g CH(4) COD/g VSS d and 0.694 g CH(4) COD/g VSS d, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号