首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown Ring Disease (BRD) is a bacterial disease caused by the pathogen, Vibrio tapetis. The disease induces formation of a brown deposit on inner shell of the Manila clam, Ruditapes philippinarum. Development of this disease is correlated with a decrease in the condition index of infected clams. Experiments were conduced in order to assess the effect of the development of BRD on two parameters affecting the energy balance of the clams: the clearance and the respiration rates. Experiments were performed in a physiological measurement system that allowed simultaneous measures of clearance and respiration rates. During both acclimation and measurements clams were fed with cultured T-iso and temperature was close to seasonal field temperature (10°C). Our results showed that severely diseased clams (conchiolin deposit stage, CDS ≥ 4) are subject to weight loss in comparison to uninfected ones, indicating that BRD induces a disequilibrium in the energy balance. We demonstrated a reduction of the clearance rate of severely diseased clams which led to a decrease in energy acquisition. Respiration rate showed a significant decrease with BRD symptoms, but evidence in the literature allowed us to hypothesize that energy mobilised for an immune response and lesion repair increases overall organism maintenance costs. Both factors should thus contribute to the degradation of the energy balance of diseased clams. Because effects of BRD on naturally infected clams only appears significant for CDS ≥ 4, when brown ring assumes a significant place on the inner shell, we consider that the Manila clam is tolerant of low disease levels.  相似文献   

2.
Brown ring disease (BRD) causes high mortalities in the introduced Manila clam Ruditapes philippinarum cultured in western Europe. The etiological agent of BRD, Vibrio tapetis, adheres to and disrupts the production of the periostracal lamina, causing the anomalous deposition of periostracum around the inner shell. Because the primary sign of BRD is found outside the soft tissues, the processes leading to death are not as obvious as those for internal pathogens. This study was designed to evaluate the pathogenicity of V. tapetis, in an attempt to help explain the mechanisms of mortality. We found high mortalities (up to 100%) for clams following the inoculation of V. tapetis into the extrapallial space (between mantle and inner shell) or the posterior adductor muscle of healthy R. philippinarum. Microscopy and immunological detection methods showed that the pathogen was rapidly eliminated from tissues and hemolymph of animals that survived the inoculation. In clams that died, the bacteria were found to have proliferated, resulting in severe tissue disruption. Bacteria were able to penetrate into tissues from the extrapallial space through the external epithelium of the mantle. In contrast, no mortalities were observed following injection of V. tapetis in the native European clam Ruditapes decussatus, which is resistant to BRD. This clam rapidly eliminated the bacterium from hemolymph and soft tissues. Clam mortality associated with BRD in the field is likely to result from the penetration of V. tapetis into the clam's extrapallial space through the disrupted periostracal lamina and from there into the soft tissues through the irritated mantle epithelium. Some bacteria also penetrate through the digestive epithelia. In either case, bacteria proliferate rapidly in the soft tissues, causing severe damage and subsequent death.  相似文献   

3.
Shell disease in the abalone Haliotis tuberculata L. is characterized by a conchiolin deposit on the inner surface of the shell. The gross clinical signs appear similar to the Brown Ring Disease (BRD) of clams. BRD has been extensively described in clams and is known to be responsible for severe mortalities and the collapse of the clam aquaculture industry in western France. In the clam, it was found to be caused by the infection of the mantle by Vibrio tapetis. Brown protein deposits have been observed in various abalone species around the world; some of these have been associated with a fungal infection in New Zealand, but the ones described here are similar to bacterial infections observed in clams. Larger animals appeared to be more affected by the disease, and a positive correlation of the number of successive infections found in the shells with the level of infestation of the shell by borers suggests that boring polychaetes and sponges may be vectors of the disease, or that the parasite infestation may increase the susceptibility of the animal to this infection. There is no evidence, however, that this infection causes mortality in abalone.  相似文献   

4.
European stocks of the Manila clam Ruditapes philippinarum are affected by the Brown Ring Disease (BRD), which is caused by Vibrio tapetis. BRD is characterized by an accumulation of a brown organic matrix on the inner face of the shell. Clams that recover from BRD develop a white mineralized layer covering the brown matrix. Stocks of clams that showed resistance to BRD development, as enhanced recovery, have been monitored since 2000. We have examined two selected stocks: a Low Susceptibility (LS) stock and a High Susceptibility stock (HS), over three generations. The LS stock showed less evidence of the BRD symptoms, and more evidence of total shell repair, both in the field and following experimental challenge with V. tapetis, indicating that some clams may be less vulnerable to a V. tapetis attack than others. The inner face of the valves of the LS and HS clams of the two last generations were analysed with scanning electron microscopy. Examination of shells from BRD-affected clams showed that during the repair process, calcium crystals were progressively laid down until the affected zone was entirely covered. By the end of the shell repair process, a final organic layer covered the calcium crystal mounds. This layer seemed essential in the recovery process. The results indicate that the shell repair capability of the clams is the principal mechanism implicated in the development of BRD resistance in the Manila clam stocks. However, this resistance did not increase with generation because the broodstock was maintained at a site where selection pressure was low, due to a low prevalence of V. tapetis.  相似文献   

5.
For more than two decades, the Manila clam Ruditapes philippinarum has been regularly affected by Brown Ring Disease (BRD), an epizootic event caused by the bacterium Vibrio tapetis and characterized by the development of a brown deposit on the inner face of valves. Although BRD infection is often lethal, some clams recover by mineralizing a new repair shell layer, which covers the brown deposit and fully isolates it from living tissues. In order to understand this specific shell repair process, the microstructures of repaired zones were compared to those of shells unaffected by BRD. In addition, the organic matrix associated with unaffected shells and to repair patches were extracted and compared by biochemical and immunological techniques. Our results show that the repaired zones exhibit microstructures that resemble the so-called homogeneous microstructure of the internal layer, with some marked differences, like the development of crossed-acicular crystals, which form chevron-like patterns. In the three tested batches of repaired layers, the matrices exhibit certain heterogeneity, i.e., they are partially to widely different from the ones of shells unaffected by BRD, as illustrated by SDS-PAGE and by serological comparisons. Our results strongly suggest a modification of the secretory regime of calcifying mantle cells during the shell repair process. Polyclonal antibodies, which were developed against specific protein fractions of the shell, represent relevant tools for localizing by immunohistology the cells responsible for the repair.  相似文献   

6.
Brown Ring Disease (BRD), a vibriosis affecting the clam Ruditapes philippinarum, is present on the Atlantic coasts of Western Europe and is considered to be a cold water disease. The present work investigated the effect of temperature on immune response and its relationships with BRD development. Clams maintained at different temperatures (8, 14 and 21 degrees C) were experimentally challenged with the pathogen Vibrio tapetis, the etiologic agent of BRD. Results demonstrated significant effects of temperature on disease development and on hemolymph immune parameters including total and viable hemocyte counts, lysozyme and leucine aminopeptidase activities. Thirty days after challenge, clams maintained at 21 degrees C displayed significantly higher values for all the measured immune parameters in comparison to specimens incubated at 14 degrees C. Improved performance of the immune system was associated with a low BRD prevalence. The recovery process, which occured mainly at 21 degrees C, was associated with high percentages of viable hemocytes and high activities of leucine amino-peptidase and lysozyme. This laboratory study clearly demonstrates that temperature strongly affects BRD development and clam immune response during infection. Favourable immune status at higher temperature may confer upon the clam a better capacity to fight the disease agent, and therefore to recover more easily.  相似文献   

7.
Brown Ring Disease (BRD), which affects the Manila clam in Europe, is caused by the bacterium, Vibrio tapetis. BRD has been diagnosed in Ireland on only one occasion (1997) although the aetiological agent has recently been detected in apparently healthy Manila clams from a number of sites around the Irish coast. The present work investigated the susceptibilities to BRD of two stocks of Manila clams, one from Ireland and the second from Galicia, north-western Spain, where BRD has been reported on a number of occasions. Exposure of the clams was by addition of V. tapetis to the holding waters. Development of BRD was assessed by the appearance of brown ring signs on the host shells, by bacterial isolation and characterization, and by detection of the bacterium by PCR. The pathogen was recovered from infected individuals and confirmed as V. tapetis by biochemical tests and a slide agglutination test. Galician clams experienced significantly higher mortalities, BRD prevalences and V. tapetis levels than Irish clams. Background infection with V. tapetis in the control stocks prevented conclusions being drawn on comparative susceptibility of the two stocks. Irish clams were significantly affected by the experimental challenge, as demonstrated by the development of BRD and an increase in V. tapetis levels. Results illustrate the vulnerability of Irish clams to BRD and have implications for the movement and transfer of clam seed in Ireland.  相似文献   

8.
Brown Ring Disease (BRD) is a bacterial disease caused by Vibrio tapetis which affects cultured clams and causes heavy economic losses. In this study, 28 V. tapetis strains isolated from 5 different hosts were intraspecifically characterized by 3 different polymerase chain reaction- (PCR-) based typing methods: enterobacteria repetitive intergenic consensus (ERIC)-PCR, repetitive extragenic palindromic (REP)-PCR and randomly amplified polymorphic DNA (RAPD)-PCR. Cluster analysis of genetic profiles obtained from these molecular techniques clearly showed the existence of 3 genetic groups strongly correlated to the host origin. The first group was formed by 23 V. tapetis strains isolated from Manila clam Ruditapes philippinarum, 1 isolated from venus clam Venerupis aurea, and 1 isolated from common cockle Cerastoderma edule, all collected from France and Spain. The second group was formed by 2 strains isolated from carpet-shell clam R. decussatus cultured in the northwest of Spain. The third group was composed of 1 strain isolated from Atlantic halibut Hippoglossus hippoglossus from the UK. We concluded that the 3 typing methods based on PCR were useful for the intraspecific typing of V. tapetis strains, and that they can potentially be used as a fast and reliable tool for epidemiological studies in the future.  相似文献   

9.
The Manila clam Ruditapes philippinarum was introduced for aquacultural purposes to Europe in the 1970s. In 1987, brown ring disease (BRD), caused by Vibrio tapetis, appeared in clams cultivated in Brou?nou (Finistère, France) and later became increasingly widespread and was reported in cultivated and wild clams existing on the Atlantic coasts of France and Spain. The present study reports, for the first time, the presence of BRD in clams cultivated in England. The etiologic bacterium was isolated and identified using bacteriological and serological techniques. The defence response of affected clams was also studied and significant changes in the hematological and biochemical characteristics of hemolymph and extrapallial fluids were demonstrated. Significant mobilization of hemocytes toward the extrapallial fluids, in contact with the main site of infection (mantle-periostracal lamina area), was observed, suggesting a role for these pseudo-internal compartments in the preservation of clam health.  相似文献   

10.
In microbial infections, the interaction between microorganisms and phagocytic cells is a crucial determinant in the outcome of the disease process. We used flow cytometry to study the in vitro interactions between Vibrio tapetis, the bacterium responsible for Brown Ring Disease (BRD) in the Manila clam Ruditapes philippinarum, and haemocytes from three bivalve species: the Manila clam (susceptible to BRD), the hard clam Mercenaria mercenaria and the eastern oyster Crassostrea virginica (both non-susceptible to BRD). Results demonstrated that V. tapetis cells and extracellular products elicit major changes in the haemocytes of R. philippinarum, including decreased viability and phagocytic activity, and altered size and internal structure. V. tapetis was able to kill haemocytes from M. mercenaria and C. virginica but to a far lesser extent than those of R. philippinarum. These results suggest that disease resistance is not solely dependent on a host activity against the pathogen, but is also a function and magnitude of the injury to the host cell by a given pathogen.  相似文献   

11.
The Manila clam, Ruditapes philippinarum can become infected by the bacterium Vibrio tapetis which causing the Brown Ring Disease along North European Atlantic coasts. Variations in clam immune parameters have been reported in clam challenged with V. tapetis but no studies have been done on Nitric Oxide (NO) production. NO is a toxic agent to pathogens produced mostly by immune cells such as hemocytes in invertebrates. In this study, we demonstrated that NO production in hemolymph and extrapallial fluid of clams is dose dependent and increases with incubation time with V. tapetis. Moreover, the augmentation of NO production seems to be directly correlated to cell rounding and to the loss of pseudopods-forming capacity of hemocytes during the infection process.  相似文献   

12.
The mineral phase of shell repair in the Manila clam Venerupis philippinarum affected by brown ring disease (BRD) was characterised at various scales and at various stages of shell repair by confocal Raman microspectrometry and scanning electron microscopy. Spherulitic and quadrangular aragonite microstructures associated with polyene pigments were clearly observed. Von Kossa staining showed that at the beginning of shell repair, hemocytes are filled with insoluble calcium carbonate salts in all fluids and then are transported toward the extrapallial fluids and the repair sites. Our analyses suggest that after a Vibrio tapetis attack and BRD deposit some clams rapidly cover the deposit, resulting in a modification in the microstructure, which could be produced by the participation of both the mantle and hemocytes.  相似文献   

13.
Two episodes of mortality of cultured carpet shell clams (Ruditapes decussatus) associated with bacterial infections were recorded during 2001 and 2002 in a commercial hatchery located in Spain. Vibrio alginolyticus was isolated as the primary organism from moribund clam larvae that were obtained during the two separate events. Vibrio splendidus biovar II, in addition to V. alginolyticus, was isolated as a result of a mixed Vibrio infection from moribund clam larvae obtained from the second mortality event. The larval mortality rates for these events were 62 and 73%, respectively. Mortality was also detected in spat. To our knowledge, this is the fist time that these bacterial species have been associated with larval and juvenile carpet shell clam mortality. The bacterial strains were identified by morphological and biochemical techniques and also by PCR and sequencing of a conserved region of the 16S rRNA gene. In both cases bacteria isolated in pure culture were inoculated into spat of carpet shell clams by intravalvar injection and by immersion. The mortality was attributed to the inoculated strains, since the bacteria were obtained in pure culture from the soft tissues of experimentally infected clams. V. alginolyticus TA15 and V. splendidus biovar II strain TA2 caused similar histological lesions that affected mainly the mantle, the velum, and the connective tissue of infected organisms. The general enzymatic activity of both live cells and extracellular products (ECPs), as evaluated by the API ZYM system, revealed that whole bacterial cells showed greater enzymatic activity than ECPs and that the activity of most enzymes ceased after heat treatment (100°C for 10 min). Both strain TA15 and strain TA2 produced hydroxamate siderophores, although the activity was greater in strain TA15. ECPs from both bacterial species at high concentrations, as well as viable bacteria, caused significant reductions in hemocyte survival after 4 h of incubation, whereas no significant differences in viability were observed during incubation with heat-killed bacteria.  相似文献   

14.
The pathological condition of the short-neck clam Ruditapes philippinarum was surveyed along the coast of Kumamoto, Japan, in June 2004. DNA sequences of the non-transcribed spacer region and internal transcribed spacer region flanking 5.8S rRNA identified Perkinsus olseni among the clams. Ray’s fluid thioglycollate medium assay indicated that 96.7% of the clams surveyed from the Kiguchi River tidal flat (native clams, Stn KR-N) and 96.7% of the clams surveyed from the Midori River tidal flat (Stn MR) were infected with P. olseni with an infection intensity of 464,278 and 199,937 Perkinsus cells/gram tissue wet weight (gWW), respectively. In contrast, 66.7% of the clams imported from China and stored along the Kiguchi River tidal flat (Stn KR-I) and 20.2% of clams from the Arao tidal flat (Stn AT) were infected with P. olseni with an infection intensity of 37,547 and 3382 Perkinsus cells/gWW, respectively. Brown ring disease was detected in the clam population from Stn KR-I at a prevalence of 90.0%. Polymerase chain reaction and the 16S rRNA sequence suggested that the agents of brown ring disease observed at Stn KR-I were Vibrio tapetis-like bacteria. Sporocysts and metacercariae of unidentified trematodes were also observed in the gonads and mantle of the clams from Stn KR-I, Stn MR, and Stn AT, at prevalences of 7.1-42.9%. Metacestodes (larval tapeworms) were found in the foot and digestive gland at a prevalence of 52.5%, 30.0%, and 14.3% in clams from Stns MR, AT, and KR-N, respectively. Histology also showed massive hemocyte infiltration and inflammation among clams heavily infected with P. olseni. Castration of the follicle was typical among clams infected with the trematode. The data indicate that most of the clams along the coast of Kumamoto are infected with various pathogens at various rates of infection, and these pathogens could have negative effects on the clam population in the long term.  相似文献   

15.
This work compared the effect of challenge with Vibrio tapetis, the etiologic agent of brown ring disease (BRD) in clams, and other bacterial strains on defence-related factors in four bivalve species: Ruditapes philippinarum (highly susceptible to BRD), R. decussatus (slightly susceptible to BRD), Mercenaria mercenaria and Crassostrea virginica (both non-susceptible to BRD). Results show that bacterial challenge modulated defence-related factors, namely total and differential haemocyte counts, percentage of viable haemocytes, and lysozyme activity, both in haemolymph and extrapallial fluid. Injection with bacteria induced a response that was dependent upon the bacterial and bivalve species investigated, and upon the site of inoculation: external (pallial cavity), pseudo-internal (extrapallial space), or internal compartment (adductor muscle). The most conspicuous changes were systematically measured in R. philippinarum injected with V. tapetis, indicating a bacterial pathogenicity particular to the host in which it causes a specific disease syndrome. Alterations of defence-related factors were maximal in haemolymph of clams injected with V. tapetis in the muscle, and in the extrapallial fluid when the bacteria were injected into the pallial or the extrapallial cavity. Resistance to the development of the BRD symptom was not related to the extent of the haemocyte reaction measured following in vivo challenge.  相似文献   

16.
The occurrence of brown ring disease (BRD) in farmed Manila clams Ruditapes philippinarum is seasonal. Development of the disease is believed to require the presence of the infective agent Vibrio tapetis and particular environmental conditions. This paper studies the effect of salinity (20 to 40 per thousand) on measurable immune parameters of Manila clams, and the progression of BRD in experimentally infected individuals. At 20 per thousand salinity, the total haemocyte count was reduced and disease prevalence was highest. At 40 per thousand salinity significantly fewer clams presented signs of BRD, and this was correlated with increases in the total haemocyte count, hyalinocyte count, phenoloxidase levels and phagocytic activity of haemocytes. Inoculation of clams with V. tapetis did not have a significant effect on the immune parameters measured. Thus, this laboratory-based study relates environmental stress to disease development.  相似文献   

17.
The Manila clam Ruditapes philippinarum was introduced to Norway in 1987 and was produced in 2 hatcheries until 1991. Clam seed was planted at 6 sites. Two sites were on the Island of Tysnes, south of Bergen. Surviving adult Manila clams were recovered in 1995 and 1996. In the present study, Manila clams from the original seeding that displayed morphological signs of brown ring disease (BRD) were recovered in June 2003 (n=7) and in June 2004 (n=17). Samples from extrapallial fluid, tissues and haemolymph were inoculated on marine agar. Replicate subcultures on selective media were used to select potential Vibrio tapetis strains, and in total, 190 bacterial strains were isolated. One of these strains clustered within the V tapetis clade and was named NRP 45. DNA:DNA hybridisation with the type strain CECT4600 showed 52.7 and 57.3% DNA:DNA similarity. Hybridisation of NRP 45 and the V tapetis LP2 strain, isolated from corkwing wrasse Symphodus melops, produced 46.6 and 44.4% re-association. Partial gene segments encoding 16S rRNA, gyrase B protein (GyrB) and chaperonin 60 protein (Cpn60) were characterised and compared to CECT 4600. NRP 45 showed 5 differences in the 1416 nucleotides (nt) of the 16S rRNA encoding gene (99.6% similarity), while the GyrB encoding gene had 62 substitutions of 1181 nt compared (94.8% similarity) and the Cpn60 encoding gene had 22 substitutions out of 548 nt compared (96% similarity). This is the first finding of BRD and the first isolation of a V. tapetis-like bacterial strain from a bivalve in Norway.  相似文献   

18.
Molecular and immunological probes were used to identify various life stages of Perkinsus olseni, a protozoan parasite of the Manila clam Ruditapes philippinarum, from a marine environment and decomposing clam tissue. Western blotting revealed that the antigenic determinants of the rabbit anti-P. olseni antibody developed in this study were peptides with molecular masses of 55.9, 24.0, and 19.2 kDa. Immunofluorescent assay indicated that the rabbit anti-P. olseni IgG was specific to all life stages, including the prezoosporangium, trophozoite, and zoospore. Perkinsus olseni prezoosporangium-like cells were successfully isolated from marine sediment collected from Hwangdo on the west coast of Korea, where P. olseni-associated clam mortality has recurred for the past decade. Purified cells were positively stained with the rabbit anti-P. olseni antibody in an immunofluorescence assay, confirming for the first time the presence of P. olseni in marine sediment. Actively replicating zoospores inside the prezoosporangia were observed in the decomposing clam tissue collected from Hwangdo. P. olseni was also isolated from the feces and pseudofeces of infected clams and confirmed by PCR. The clams released 1-2 prezoosporangia per day through feces. The data suggested that the fecal discharge and decomposition of the infected clam tissue could be the two major P. olseni transmission routes.  相似文献   

19.
20.
Quahog Parasite Unknown (QPX) is a protistan parasite affecting hard clams Mercenaria mercenaria along the Northeastern coast of the United States. The geographic distribution and occurrence of disease epizootics suggests a primary role of temperature in disease development. This study was designed to investigate the effect of temperature on constitutive and QPX-induced defense factors in M. mercenaria. Control and QPX-challenged (both experimentally and naturally) clams were maintained at 13, 21 and 27 °C for 4 months. Control and experimentally-infected clams originated from a southern broodstock (Florida, no prior reports of disease outbreak) while naturally-infected clams originated from a northern broodstock (Massachusetts, enzootic area). Standard and QPX-specific cellular and humoral defense parameters were assessed after 2 and 4 months. Measured parameters included total and differential hemocyte counts, reactive oxygen species production, phagocytic activity of hemocytes, lysozyme concentration in plasma, anti-QPX activity in plasma and resistance of hemocytes to cytotoxic QPX extracellular products. Results demonstrated a strong influence of temperature on constitutive clam defense factors with significant modulation of cellular and humoral parameters of control clams maintained at 13 °C compared to 21 and 27 °C. Similarly, clam response to QPX challenge was also affected by temperature. Challenged clams exhibited no difference from controls at 27 °C whereas different responses were observed at 21 °C and 13 °C compared to controls. Despite differences in infection mode (experimentally or naturally infected) and clam origin (northern and southern broodstocks), similarities were observed at 13 °C and 21 °C between QPX infected clams from Florida and Massachusetts. Clam response to temperature and to QPX exhibited interesting relationship with QPX disease development highlighting major influence of temperature on disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号