首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To understand the relationship between the expression and the genomic organization of the zebrafishdlxgenes, we have determined the genomic structure of thedlx2anddlx4loci. This led to the identification of the zebrafishdlx1anddlx6genes, which are closely linked todlx2anddlx4,respectively. Therefore, the inverted convergent configuration ofDlxgenes is conserved among vertebrates. Analysis of the expression patterns ofdlx1anddlx6showed striking similarities to those ofdlx2anddlx4,respectively, the genes to which they are linked. Furthermore, the expression patterns ofdlx3anddlx7,which likely constitute a third pair of convergently transcribed genes, are indistinguishable. Thus, the overlapping expression patterns of linkedDlxgenes during embryonic development suggest that they sharecis-acting sequences that control their spatiotemporal expression. The evolutionary conservation of the genomic organization and combinatorial expression ofDlxgenes in distantly related vertebrates suggest tight control mechanisms that are essential for their function during development.  相似文献   

3.
Gadd45 proteins have been implicated in the cellular response to physiological or environmental stress and the accompanying cell cycle arrest, DNA repair, cell survival and senescence or apoptosis. Although their molecular function is well studied, the expression and role of Gadd45 genes during embryonic development in mice is largely unknown. Here we provide a comprehensive comparison of Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. In situ hybridizations on sectioned and whole mouse embryos show most prominent Gadd45a expression in the tip of the closing neural tube, the cranial and dorsal root ganglia and the somites. Mouse Gadd45b is expressed strongly in the chorion, but only weakly in the embryo proper, including somites and limb buds. Murine Gadd45g expression strongly resembles Xenopus and medaka fish expression in primary neuron precursors and post-mitotic neurons, indicating a conserved role for Gadd45g in vertebrate neurogenesis. Additionally, Gadd45 genes show conserved expression during somitogenesis. In summary, Gadd45 genes are expressed in evolutionary conserved, but also divergent domains, which predominantly encompass areas of cell differentiation, consistent with their established function in growth arrest and DNA demethylation.  相似文献   

4.
The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.  相似文献   

5.
In order to test whether Kiss/Kissr systems have potential roles in regulating the embryonic and larval development in teleosts, in this study the Kiss2/Kiss2r full‐length cDNA was cloned from blunt snout bream (Megalobrama amblycephala Yih, 1955) by rapid amplification of cDNA ends and their expression patterns were detected in different tissues of adult and developmental stages for the embryonic and larval periods via quantitative real‐time PCR. Both Kiss and Kissr genes full‐length cDNA sequences of M. amblycephala were obtained and phylogenetic analysis results indicated that these genes belong to the Kiss2/Kiss2r clade. Bioinformatics analyses revealed that there was a conserved decapeptide in M. amblycephala Kiss2 gene putative amino acids, but only two transmembrane domains were predicated in Kiss2r. Tissue distribution analyses showed that both genes were widely expressed in the tissues tested, with high levels in the muscle, gonad and pituitary. At different developmental stages, the mRNA expression of Kiss2/Kiss2r was highest in the blastocyst/15 hpf stage and lowest in the 30 hpf /blastocyst stages for the embryonic period, highest in 7 dph/15 dph and lowest in 30 dph/30 dph for larval period, respectively. These results suggest that the Kiss2/Kiss2r system has varied potential for influencing embryonic and larval development in fish species.  相似文献   

6.
Members of the orthodenticle (otd/Otx) and empty spiracles (ems/Emx) gene families are head gap genes that encode homeodomain-containing DNA-binding proteins. Although numerous studies show their central role in developmental processes in brain specification, a surprisingly high number of other developmental processes have been shown to involve their expression. In this paper, we report the identification and expression of ems and otd in two chelicerate species: a scorpion, Euscorpius flavicaudis (Chactidae, Scorpiona, Arachnida, Euchelicerata) and a spider, Tegenaria saeva (Aranea, Arachnida, Euchelicerata). We show that both ems and otd are expressed not only in an anterior head domain but also along the entire anterior–posterior axis during embryonic development. The expression patterns for both genes are typically segmental and concern neurectodermal territories. During patterning of the opisthosoma, ems and otd are expressed in the lateral ectoderm just anterior to the limb bud primordia giving rise to respiratory organs and spinnerets (spider). This common pattern found in two divergent species thus appears to be a conserved character of chelicerates. These results are discussed in terms of evolutionary origin of respiratory organs and/or functional pathway recruitment.  相似文献   

7.
Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.  相似文献   

8.
Anabarilius grahami is a cyprinoid fish endemic to Fuxian Lake, Yunnan, China. In this study, a comprehensive staging series of A. grahami was produced. The embryonic development of A. grahami was divided into six main periods: zygote period, cleavage period, blastula period, gastrula period, segmentation period and hatching period. Its embryonic development is essentially similar to that of zebrafish Danio rerio but relatively slower. The expression patterns of A. grahami sox2, pax6a, six3a and rx2 genes were also cloned and checked during eye development. The four genes showed similar expression patterns to their D. rerio homologues, suggesting the evolutionary conservation of the regulatory network of eye development.  相似文献   

9.
10.
11.
12.
Spiders represent widely used model organisms for chelicerate and even arthropod development and evolution. Wnt genes are important and evolutionary conserved factors that control and regulate numerous developmental processes. Recent studies comprehensively investigated the complement and expression of spider Wnt genes revealing conserved as well as diverged aspects of their expression and thus (likely) function among different groups of spiders representing Mygalomorphae (tarantulas), and both main groups of Araneae (true spiders) (Haplogynae/Synspermiata and Entelegynae). The allegedly most modern/derived group of entelegyne spiders is represented by the RTA-clade of which no comprehensive data on Wnt expression were available prior to this study. Here, we investigated the embryonic expression of all Wnt genes of the RTA-clade spider Cupiennius salei. We found that most of the Wnt expression patterns are conserved between Cupiennius and other spiders, especially more basally branching species. Surprisingly, most differences in Wnt gene expression are seen in the common model spider Parasteatoda tepidariorum (a non-RTA clade entelegyne species). These results show that data and conclusions drawn from research on one member of a group of animals (or any other organism) cannot necessarily be extrapolated to the group as a whole, and instead highlight the need for comprehensive taxon sampling.  相似文献   

13.
Postembryonic segmentation (anamorphosis) is widespread among arthropods, but only partially known as for its developmental mechanics and control. Studies on developmental genetics of segmentation in anamorphic arthropods are mostly limited to the germ band stage, during early phases of embryonic development. This work presents the first data on the postembryonic expression of a segmentation gene in a myriapod. Using real-time PCR, we analyzed engrailed expression patterns during the anamorphic stages of the centipede Lithobius peregrinus. A variation pattern in en RNA level during anamorphosis suggests that gene expression is precisely modulated during this period of development and that engrailed is mainly expressed in the posterior part of the body, in the newly differentiating segments of each stage. As anamorphosis is possibly the primitive segmentation mode in arthropods, the postembryonic en expression pattern documented here provides evidence for a conservation of en role in ontogeny, across the embryonic/postembryonic boundary, as well as in phylogeny, across the same boundary, but in the opposite direction, from primitive postembryonic expression to the more derived expression in clades with exclusively embryonic segmentation.  相似文献   

14.
WNTs are secreted signaling molecules which control cell differentiation and proliferation. They are known to play essential roles in various developmental processes. Wnt genes have been identified in a variety of animals, and it has been shown that their amino acid sequences are highly conserved throughout evolution. To investigate the role of wnt genes during fish development from the evolutionary viewpoint, six medaka wnt genes (wnt4, wnt5a, wnt6, wnt7b, wnt8b and wnt8-like) were isolated and their embryonic expression was examined. These wnt genes were expressed in various tissues during embryonic development, and most of their expression patterns were conserved or comparable to those of other vertebrates. Thus, these wnt genes may be useful as molecular markers to investigate development and organogenesis using the medaka. Focus was on wnt5a, which was expressed in the pectoral fin buds, because its expression pattern was particularly comparable to that in tetrapod limbs. Its detailed expression pattern was further examined during pectoral fin bud development. The conservation and diversification of Wnt5a expression through the evolutionary transition from fish fins to tetrapod limbs is discussed.  相似文献   

15.
Fos-like antigens (Fosl) including Fosl1 and Fosl2 exclusively heterodimerize with Jun members to form AP-1 complex, thereby participating in various cellular progresses including cell cycle regulation. However, expression patterns of these two genes during embryonic development remains largely unknown. In the present study, both temporal and spatial expression patterns of fosl1 and fosl2 were examined during embryonic development of Xenopus tropicalis. Real-time quantitative PCR results showed that the expression of the two genes was increased from stage 2 to stage 42. However, expression level of fosl1 is much higher than that of fosl2 at stage 42. Whole-mount in situ hybridization showed that fosl1 was expressed in eyes, branchial arch, notochord, otic vesicle, and liver. However, fosl2 was expressed in lung primordium from stage 34 to stage 38, in addition to the moderate expression in eyes and branchial arch at stage 42. Thus, the developmental expression patterns of these two fosl genes is different in Xenopus embryos. These results provide a basis for further functional study of these two genes.  相似文献   

16.
17.
In recent years it has become evident that the developmental regulatory genes involved in patterning the embryonic body plan are conserved throughout the animal kingdom. Striking examples are the orthodenticle (otd/Otx) gene family and the Hox gene family, both of which act in the specification of anteroposterior polarity along the embryonic body axis. Studies carried out in Drosophila and mouse now demonstrate that these genes are also involved in the formation of the insect and mammalian brain; the otd/Otx genes are involved in rostral brain development and the Hox genes are involved in caudal brain development. These studies also show that the genes of the otd/Otx family can functionally replace each other in cross-phylum rescue experiments and indicate that the genetic mechanisms underlying pattern formation in insect and mammalian brain development are evolutionarily conserved. BioEssays 21:677–684, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

18.
Understanding how a single genome creates and maintains distinct phenotypes is a central goal in evolutionary biology. Social insects are a striking example of co‐opted genetic backgrounds giving rise to dramatically different phenotypes, such as queen and worker castes. A conserved set of molecular pathways, previously envisioned as a set of ‘toolkit’ genes, has been hypothesized to underlie queen and worker phenotypes in independently evolved social insect lineages. Here, we investigated the toolkit from a developmental point of view, using RNA‐Seq to compare caste‐biased gene expression patterns across three life stages (pupae, emerging adult and old adult) and two female castes (queens and workers) in the ant Formica exsecta. We found that the number of genes with caste‐biased expression increases dramatically from pupal to old adult stages. This result suggests that phenotypic differences between queens and workers at the pupal stage may derive from a relatively low number of caste‐biased genes, compared to higher number of genes required to maintain caste differences at the adult stage. Gene expression patterns were more similar among castes within developmental stages than within castes despite the extensive phenotypic differences between queens and workers. Caste‐biased expression was highly variable among life stages at the level of single genes, but more consistent when gene functions (gene ontology terms) were investigated. Finally, we found that a large part of putative toolkit genes were caste‐biased at least in some life stages in F. exsecta, and the caste‐biases, but not their direction, were more often shared between F. exsecta and other ant species than between F. exsecta and bees. Our results indicate that gene expression should be examined across several developmental stages to fully reveal the genetic basis of polyphenisms.  相似文献   

19.
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect‐only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co‐expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co‐expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co‐expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号