首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity when the enzyme was assayed in the presence of Mg2+. The basal and prostaglandin E1-stimulated adenylate cyclase activities were also increased by washing, which presumably removes endogenous GTP. The analog, guanyl-5′-yl-imidodiphosphate mimics the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase activity but it stimulates basal enzyme activity. The onset of the inhibitory effect of GTP on the adenylate cyclase system is rapid (1 min) and is maintained at a constant rate during incubation for 10 min. GTP and guanyl-5′-yl-imidodiphosphate were noncompetitive inhibitors of prostaglandin E1. An increase in the concentration of Mg2+ gradually reduces the effect of GTP while having little influence on the effect of guanyl-5′-yl-imidodiphosphate. Neither the substrate concentration nor the pH (7.2–8.5) is related to the inhibitory effect of guanine nucleotides. The inhibition by nucleotides was found to show a specificity for purine nucleotides with the order of potency being guanyl-5′-yl-imidodiphosphate > dGTP > GTP > ITP > XTP > CTP > TTP. The inhibitory effect of GTP is reversible while the effect of guanyl-5′-yl-imidodiphosphate is irreversible. The GTP inhibitory effect was abolished by preparing the lysates in the presence of Ca2+. However, the inhibitory effect of guanyl-5′-yl-imidodiphosphate persisted. Substitution of Mn2+ for Mg2+ in the assay medium resulted in a diminution of the inhibitory effect of GTP on basal activity and converted the inhibitory effect of GTP on prostaglandin E1-stimulated activity to a stimulatory effect. At a lower concentration of Mn2+ (less than 2 mM) guanyl-5′-yl-imidodiphosphate inhibited prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occuring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

2.
Uridine monophosphate (UMP) kinase converts UMP to the corresponding UDP in the presence of metal ions and ATP and is allosterically regulated by nucleotides such as UTP and GTP. Although the UMP kinase reported to date is Mg2+-dependent, we found in this study that the UMP kinase of Helicobacter pylori had a preference for Mn2+ over Mg2+, which may be related to a conformational difference between the Mn2+-bound and Mg2+-bound UMP kinase. Similar to previous findings, the UMP kinase activity of H. pylori UMP kinase was inhibited by UTP and activated by GTP. However, a relatively low GTP concentration (0.125 mM) was required to activate H. pylori UMP kinase to a level similar to other bacterial UMP kinases using a higher GTP concentration (0.5 mM). In addition, depending on the presence of either Mg2+ or Mn2+, a significant difference in the level of GTP activation was observed. It is therefore hypothesized that the Mg2+-bound and Mn2+-bound H. pylori UMP kinase may be activated by GTP through different mechanisms.  相似文献   

3.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

4.
An enzyme fraction from aged swede root disks catalyses the formation of CoA thioesters of cinnamic acids in the presence of CoA, ATP and Mg2+. The enzyme shows activity only to those cinnamic acid derivatives bearing a phenolic OH group, p-coumaric and ferulic acids being the most active substrates. The requirement for Mg2+ can be replaced by Mn2+, Co2+ or Ni2+. The requirement for ATP could not be replaced by GTP, CTP, UTP, ADP or AMP. ADP and AMP, but not pyrophosphate, inhibited the ATP dependent activation of p-coumarate. The activity was inhibited by N-ethylmaleimide and p-chloro-mercuribenzoate which suggests a requirement for -SH groups for activation. The activity of the enzyme is low in freshly prepared disks but rises during ageing, particularly if the ageing is carried out in the presence of low concentrations of ethylene.  相似文献   

5.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containg forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 μM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 μM and 85–120 μM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 μM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO nitroso compounds.  相似文献   

6.
An effective method of preparation involving sonication was developed for cell-free mycobacillin synthetase fromBacillus subtilis. The enzyme showed optimum activity at a buffer concentration of 50 mM (Tris-HCl) and pH 7.5. ATP and Mg2+ which were essential for synthesis showed an optimum requirement at a ratio of 1∶1. The synthetase was markedly inhibited by ADP whereas AMP was without any effect. ATP or ATP-generating system could not be replaced by GTP, UTP or CTP. Co2+ and Mn2+ could to some extent substitute Mg2+. Mercapto reagents inhibited the antibiotic synthesis. Exogenous addition of pantothenic acid had no effect.  相似文献   

7.
YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1–10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain.  相似文献   

8.
Low concentrations of Mn2+ supported the basal adenylate cyclase activity in crude and purified sarcolemmal membranes from cardiac muscle more effectively than did relatively high concentrations of Mg2+; at saturating concentrations the cyclase activities obtained with Mg2+ or Mn2+ were similar. In contrast, Mg2+ supported the basal cyclase activities of crude membrane fractions and purified sarcolemmal membranes from skeletal muscle far more effectively than did Mn2+; at saturating concentrations of either metal ion the Mg2+-supported cyclase activities were 5- to 10-fold greater than Mn2+-supported activities. Further, compared to Mg2+, Mn2+ supported the cyclase activities very poorly in all the primary subcellular fractions of skeletal muscle, whereas this cation was at least as effective as Mg2+ in all fractions of cardiac muscle. The apparent affinities of the cyclase for Mn2+ in heart as well as skeletal muscle appeared to be greater compared to those for Mg2+. The skeletal muscle cyclase displayed greater apparent affinity for MnATP2? (app. Km 0.10 mm) compared to MgATP2? (app. Km 0.32 mm) whereas the heart enzyme displayed greater apparent affinity for MgATP2? (app. Km 0.07 mm) compared to MnATP2? (app. Km 0.19 mm). Following preactivation with guanyl-5′-yl imidodiphosphate and isoproterenol, Mn2+ (0.15 to 2 mm) supported the cyclase activity of skeletal muscle even more effectively than did optimally effective concentrations of Mg2+. With the heart enzyme the relatively greater potency of Mn2+ persisted following preactivation. Significant enhancement in the Mn2+-sensitivity of skeletal muscle cyclase was also observed when assayed in the presence of GTP and isoproterenol or in the presence of NaF. Preactivation of both heart and skeletal muscle cyclases caused selective enhancement in the enzyme's apparent affinity for free Me2+ (Mg2+ or Mn2+) without influencing the apparent Km for MeATP2? (MgATP2? or MnATP2?). Evidences were obtained to show that the poor effectiveness of Mn2+ in supporting the basal activity of skeletal muscle cyclase is not related to (a) potentiation by Mn2+ of adenosine-mediated inhibition of the cyclase, (b) Mn2+-induced lability of the cyclase, (c) indirect effects of Mn2+ on ATP-regenerating system, or (d) the presence of different cation-specific molecular forms of the cyclase. It is also shown that the onset of enhanced Mn2+ sensitivity of the skeletal muscle enzyme following preactivation is not accompanied by a general loss of cation specificity of the cyclase. These results suggest that cations support the catalytic activity of adenylate cyclase by interacting with an enzymeregulatory free metal binding site and that the differential cation sensitivity of nonactivated (basal) cyclases from heart and skeletal muscle is likely due to differences in the properties of such an allosteric metal site. Furthermore, the metal site appears to undergo a conformational change following interaction of the cyclase system with the guanyl nucleotide and isoproterenol since the cation sensitivity of the cyclase and the relative potency of cations depend on the conformational status of the enzyme.  相似文献   

9.
A comparison was made between the activation of membrane-bound adenylate cyclase from rat fat cell membranes and the enzyme solubilized with digitonin. The isoprenaline stimulation of the particulate enzyme was enhanced by GTP, both in the presence of Mg2+ and Mn2+, but no effect of the metal ion nor of GTP was found on the Ka of isoprenaline. The Ka of sodium fluoride for enzyme stimulation was shifted to 3-fold higher concentrations when Mg2+ was replaced by Mn2+, whereas V decreased. GTP did not influence the Ka of sodium fluoride but reduced V, irrespective of the metal ion. After digitonin solubilization the enzyme was no longer responsive to isoprenaline or GTP; however, V of the sodium fluoride activation was higher in the presence of Mn2+ than in the presence of Mg2+, and the Ka was found at 15-fold higher concentrations. Both the solubilized and the particulate adenylate cyclase were inhibited by adenosine; this inhibition was also seen with the fluoride stimulated enzyme. We conclude that solubilization with digitonin did not result in an enzyme preparation which preferentially turns over MnATP2+, although the fat cell adenylate cyclase possesses a metal ion regulatory site with a higher affinity for Mn2+ than for Mg2+. The data suggest that the guanyl nucleotide regulatory site and the sodium fluoride-sensitive site are located on different subunits while there is an interaction between the metal ion regulatory site and the fluoride-sensitive site.  相似文献   

10.
Mg2+-ATPase activity was identified in the cytosol of human erythrocytes. A partial purification of this activity was achieved by an initial DEAE-Sephadex column chromatography, followed by gel filtration on Sephadex G-100 and then a second DEAE-Sephadex chromatography procedure. The enzyme appeared in the void volume of the Sephadex G-100 column and was retained on an Amicon XM100A ultrafiltration membrane. The molecular weight of the enzyme was estimated to be 113 000 from SDS gels. The above purification protocol yielded an enzyme with an optimal pH between 7.6 and 8.2. The enzyme activity increased linearly between 30 and 44°C. It was stable for several months at −20°C. Magnesium was essential for activity, but the rate attainable with Mn2+ was at least as great as that due to Mg2+. No other divalent cation was able to substitute for Mg2+ or Mn2+. Neither low nor high Ca2+ concentrations significantly affected the enzymatic activity. Substrate specificity studies showed that ATP was the preferred substrate followed by CTP (46% of the rate produced by ATP). Hydrolysis of GTP, UTP, ITP and ADP was less than 10% of the rate seen with ATP. No phosphatase, pyrophosphatase, phosphodiesterase, hexokinase, phosphofructokinase or adenylate cyclase activity could be detected in this enzyme preparation. Calmodulin, which stimulates the (Ca2+ + Mg2+)-ATPase of the human erythrocyte membrane, failed to enhance the Mg2+-ATPase activity. Of considerable interest, the activity of this Mg2+-ATPase was enhanced approximately 5-fold by low concentrations of mercuric ion, p-hydroxymercuribenzoate and DTNB, but was much less sensitive to iodoacetamide.  相似文献   

11.
Mg2+-ATPase activity was identified in the cytosol of human erythrocytes. A partial purification of this activity was achieved by an initial DEAE-Sephadex column chromatography, followed by gel filtration on Sephadex G-100 and then a second DEAE-Sephadex chromatography procedure. The enzyme appeared in the void volume of the Sephadex G-100 column and was retained on an Amicon XM100A ultrafiltration membrane. The molecular weight of the enzyme was estimated to be 113 000 from SDS gels. The above purification protocol yielded an enzyme with an optimal pH between 7.6 and 8.2. The enzyme activity increased linearly between 30 and 44°C. It was stable for several months at ?20°C. Magnesium was essential for activity, but the rate attainable with Mn2+ was at least as great as that due to Mg2+. No other divalent cation was able to substitute for Mg2+ or Mn2+. Neither low nor high Ca2+ concentrations significantly affected the enzymatic activity. Substrate specificity studies showed that ATP was the preferred substrate followed by CTP (46% of the rate produced by ATP). Hydrolysis of GTP, UTP, ITP and ADP was less than 10% of the rate seen with ATP. No phosphatase, pyrophosphatase, phosphodiesterase, hexokinase, phosphofructokinase or adenylate cyclase activity could be detected in this enzyme preparation. Calmodulin, which stimulates the (Ca2+ + Mg2+)-ATPase of the human erythrocyte membrane, failed to enhance the Mg2+-ATPase activity. Of considerable interest, the activity of this Mg2+-ATPase was enhanced approximately 5-fold by low concentrations of mercuric ion, p-hydroxymercuribenzoate and DTNB, but was much less sensitive to iodoacetamide.  相似文献   

12.
Guanylate cyclase activity is present in both soluble and particulate fractions of homogenates of mouse cerebellum and retina. Soluble guanylate cyclases in cerebellum and retina have an apparent Km for GTP of approx 40 and 70 μM, respectively; are stimulated by Ca2+ and Mg2+ in the presence of low Mn2+; and do not respond to NaN3, NH2OH or detergent. The particulate guanylate cyclase found in brain has an apparent Km GTP of 237 7mu;M, is not stimulated by Ca2+ or Mg2+ in the presence of low Mn2+, but is stimulated by NaN3, NH2OH, and detergent. In particulate fractions of normal retina, guanylate cyclase has two apparent Km GTP values (42 and 225 μM); has higher activity at low concentrations of Mn2+ (0.5 mM) than at high concentrations (5.0 mM); is inhibited by Ca2+; and does not respond to NaN3, NH2OH, or detergent. Retinas essentially devoid of photoreceptor cells (from mice with photoreceptor dystrophy) have soluble guanylate cyclase activity which is similar to that in normal retina, but have only 4% as much particulate guanylate cyclase activity. This residual particulate guanylate cyclase has an apparent Km GTP value of 392 μM and other properties similar to particulate guanylate cyclase from brain. These data indicate the presence of three distinguishable guanylate cyclases in CNS: (1) a soluble enzyme present in both brain and retina: (2) a particulate enzyme which is also present in brain and in the inner or neural retina: and (3) another particulate enzyme which is apparently unique and confined to retinal photoreceptor cells.  相似文献   

13.
14.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

15.
β-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The β-adrenergic agonist isoproterenol (10 μM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (≈ 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5′-(3-O-thio)triphosphate (GTPγS), isoproterenol increased cAMP formation to the same extent as that observed with AlF4?. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (≈ 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the ‘turn-off’ step for the adenylyl cyclase activation seen following β-adrenergic stimulation of rat parotid glands.  相似文献   

16.
The interdependent effects of divalent cations, pH, and various activators of adenylate cyclase were examined in partially purified plasma membranes from rat liver. This adenylate cyclase was found to exhibit largely alkaline pH optima, in the range of 8.3 to 9.3, for the expression of basal activity, and activities with GTP, GPP(NH)P, prostaglandin E1 and GTP, and N6-(phenylisopropyl)adenosine and GTP. Glucagon and GTP, while increasing activity 8- to 10-fold, shifted the optimum activity to about pH 7.5. However, stimulation of the enzyme by 10 mm NaF or 3 mm Na3VO4 was strikingly dependent on pH. In both cases activation was optimal at pH values between 6.3 and 7.3, though above about pH 8.5 fluoride was barely stimulatory and vanadate was slightly inhibitory. This effect of elevated pH to reduce fluoride- or vanadate-stimulated activity could be prevented by glucagon plus guanine nucleotide, but could not be reversed once activity was lowered during preincubation. The data suggest that this effect was not due to the formation of an inhibitor of adenylate cyclase per se, nor to an artifact of assay methods. The effect of elevated pH was more pronounced with Mn2+ as activating cation than with Mg2+. With fluoride and lower pH adenylate cyclase was essentially Mn2+ requiring, whereas with fluoride and higher pH activity was comparable with either cation. The data suggested that combinations of pH, divalent cation, and activating ligand dictate the interactions of the constitutive subunits of the adenylate cyclase and provide additional criteria with which current models for the regulation of adenylate cyclase may be tested.  相似文献   

17.
Activities and properties of adenosine triphosphatases (ATPases) were studied in mitochondrial and microsomal fractions of cestodes Bothriocephalus scorpii parasitizing in pyloric appendages of the Brandt’s bullhead Myoxocephalus brandti. The highest activity was revealed in the mitochondrial fraction. The mitochondrial and microsomal fractions of B. scorpii had the ATPase activity dependent on the presence of cations Mg2+, Mn2+, and Ca2+. Effects of ions and inhibitors on the B. scorpii ATPase activity with various cations were. Both subcellular fractions were able to hydrolyze, apart from ATP, also GTP, CTP, and UTP.  相似文献   

18.
Abstract: The effects of preincubation under phosphorylating conditions on adenylyl cyclase activity were studied in preparations containing synaptic membranes from rat cerebral cortex. Preincubation of the membranes with 2 mM ATP and 10 mM MgCl2 resulted in a 50% increase of adenylyl cyclase activity which withstood sedimentation and washing. This activation was maximal after 5 min of preincubation, was reversed after longer preincubations, and paralleled the time course of endogenous phosphorylation-dephosphorylation of proteins observed under these conditions. The activation showed a critical requirement for Mg2+ ions and was dependent on ATP concentration. Similar activation was observed after preincubation of cerebral-cortical membranes with adenosine-5′-0-(3-thiophosphate) (ATPγS), but this activation was not reversed by prolonged preincubation times. The activation by ATPγS was potentiated severalfold by including synaptoplasm in the preincubation. Further experiments indicated that the activity of nucleoside diphosphokinase, which converts ATPγS to guanosine-5′-0-(3-thiophosphate) (GTPγS), could account for this potentiation. Preincubation of washed membranes for 5 min with 10 μ.M GTP and 10 mM MgCl2 also produced a 50% activation of adenylyl cyclase which withstood sedimentation and washing and was reversed by longer preincubations. Endogenous phosphorylation of specific protein components in the membranes during the preincubation was examined by including radioactively labeled nucleoside thiophosphates in the preincubation medium. Incorporation of 35S from [35S]ATPγS into a protein component with apparent Mr of 54,000 daltons (54K) correlated significantly with the activation of adenylyl cyclase by ATPγS. Thiophosphorylation of the 54K protein was potentiated by addition of GDP to reactions carried out with [35S]ATPγS. Endogenous activity utilizing [γ-32P]GTP as a phosphate donor also preferentially phosphorylated the 54K protein band. These results support previous suggestions that protein phosphorylation plays a role in the regulation of adenylyl cyclase activity. Among the numerous membrane-bound phosphoproteins in rat brain, we have identified a specific protein component with an apparent Mr of 54,000 daltons as the most likely candidate for involvement in this mode of regulation. This 54K protein, which is a principal substrate for a GTP-preferring protein kinase activity in brain membranes, can now be at the focus of investigations attempting to demonstrate a direct role for protein phosphorylation in adenylyl cyclase regulation.  相似文献   

19.
Certain biochemical characteristics of an adenylate cyclase that is activated by low concentrations of histamine (Ka, 8 μm) and that is present in cell-free preparations from the dorsal hippocampus of guinea pig brain have been studied. Histamine increased the maximal reaction velocity of adenylate cyclase without altering the Km (0.18 mm) for its substrate, MgATP. Increasing concentrations of free Mg2+ stimulated enzymatic activity; the kinetic properties of this activation by Mg2+ suggest the existence of a Mg2+ allosteric site on the enzyme. Histamine increased the affinity of this apparent site for free Mg2+. Free ATP was a competitive inhibitor with respect to the MgATP substrate. The apparent potency of free ATP as an inhibitor increased in the presence of histamine. In the presence of Mg2+, low concentrations of Ca2+ markedly inhibited adenylate cyclase activity; half-maximal inhibition of both basal and histamine-stimulated enzyme activity occurred at 40 μm Ca2+. Other divalent cations, including Zn2+, Cu2+, and Cd2+, were also inhibitory. Of the divalent cations tested, only Co2+ and Mn2+ could replace Mg2+ in supporting histamine-stimulated adenylate cyclase activity. The nucleoside triphosphates GTP and ITP increased basal adenylate cyclase activity and markedly potentiated the stimulation by histamine. Preincubation of adenylate cyclase with 5′-guanylylimidodiphosphate dramatically increased enzyme activity; in this activated state, the adenylate cyclase was relatively refractory to further stimulation by histamine or F?. The subcellular distribution of histamine-sensitive adenylate cyclase activity was studied in subfractions from guinea pig cerebral cortex. The highest total and specific activities were observed in those fractions enriched in nerve endings, while adenylate cyclase activity was not detectable in the brain cytosol fraction. A possible physiological role for this histamine-sensitive adenylate cyclase in neuronal function is discussed.  相似文献   

20.
Guanylate cyclase activity was determined in a 1000g particulate fraction derived from rabbit heart homogenates using Mg2+ or Mn2+ as sole cation in the presence and absence of Triton X-100. With Mg2+, very little guanylate cyclase activity could be detected in the original particulate fraction assayed with or without Triton, or in the particulate fraction treated with varying concentrations of Triton (detergent-treated mixture) prior to enzyme assay. However, the detergent-solubilized supernatants as well as the detergent-insoluble residues (pellets) derived from detergent-treated mixtures possessed appreciable Mg2+-supported enzyme activity. With Mn2+, significant enzyme activity was detectable in the original particulate fraction assayed without Triton. Much higher activity was seen in particulate fraction assayed with Triton and in detergent-treated mixtures; the supernatants but not the pellets derived from detergent-treated mixtures possessed even greater activity. The sum of enzyme activity in pellet and supernatant fractions greatly exceeded that of the mixture. When the pellets and supernatants derived from detergenttreated mixtures were recombined, measured enzyme activities were similar to those of the original mixture. With Mg2+ or Mn2+, the specific activity of guanylate cyclase in pellet and supernatant fractions varied considerably depending on the concentration of Triton used for treatment of the particulate fraction; treatment with low concentrations of Triton (0.2–0.7 μmol/mg protein) gave supernatants showing high activity whereas treatment with relatively greater concentrations of the detergent (>0.7 μmol/mg protein) gave pellets showing high activity. The relative distribution of guanylate cyclase in pellet and supernatant fractions expressed as a function of Triton concentration during treatment (of the particulate fraction) showed that 50 to 80% of the recovered enzyme activity remained in supernatants at low detergent concentrations whereas 50 to 80% of the recovered activity resided in the pellets at higher detergent concentrations. Inclusion of excess Triton in the enzyme assay medium did not alter the specific activity profiles and the relative distribution patterns of the cyclase in pellet versus supernatant fractions. The results demonstrate the inherent potential of cardiac particulate guanylate cyclase to utilize Mg2+ in catalyzing the synthesis of cyclic GMP. However, it appears that some factor(s) endogenous to the cardiac particulate fraction severely impairs the expression of Mg2+-dependent activity; Mn2+-dependent activity is also affected by such factor(s) but apparently less severely. Further, the results suggest that previously reported activities of cardiac particulate guanylate cyclase, despite being assayed with Mn2+ and in the presence of Triton X-100, represent underestimation of what otherwise appears to be a highly active enzyme system capable of utilizing physiologically relevant divalent cation such as Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号