首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.  相似文献   

2.

Background and Aims

Although many hypotheses have been proposed to explain variation in leaf size, the mechanism underlying the variation remains not fully understood. To help understand leaf size variation, the cost/benefit of twig size was analysed, since, according to Corner''s rule, twig size is positively correlated with the size of appendages the twig bears.

Methods

An extensive survey of twig functional traits, including twig (current-year shoots including one stem and few leaves) and leaf size (individual leaf area and mass), was conducted for 234 species from four broadleaved forests. The scaling relationship between twig mass and leaf area was determined using standardized major axis regression and phylogenetic independent comparative analyses.

Key Results

Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1·0, independent of life form and habitat type. Thus, the leaf area ratio (the ratio of total leaf area to stem or twig mass) decreases with increasing twig size. Moreover, the leaf area ratio correlated negatively with individual leaf mass. The results of phylogenetic independent comparativeanalyses were consistent with the correlations. Based on the above results, a simple model for twig size optimization was constructed, from which it is postulated that large leaf size–twig size may be favoured when leaf photosynthetic capacity is high and/or when leaf life span and/or stem longevity are long. The model''s predictions are consistent with leaf size variation among habitats, in which leaf size tends to be small in poor habitats with a low primary productivity. The model also explains large variations in leaf size within habitats for which leaf longevity and stem longevity serve as important determinants.

Conclusions

The diminishing returns in the scaling of total leaf area with twig size can be explained in terms of a very simple model on twig size optimization.Key words: Allometry, leaf size, twig size, leaf area ratio, scaling relationship, broadleaved species  相似文献   

3.
Malassezia, a skin colonizer, is associated with multiple skin disorders in adults, and cephalic pustulosis and folliculitis in children. It can cause fungemia in infants and neonates. The time and pattern of colonization, risk factors associated with colonization and causing fungemia in children, are not well understood. The prospective cohort study was conducted to determine the rate of Malassezia species colonization and associated factors in hospitalized neonates and infants. Consecutive 50 neonates and infants admitted in neonatal and pediatric intensive care units were studied. The skin swabs were collected on the day of admission and every fifth day, thereafter, till the patient was discharged or died. Putative risk factors for the colonization of Malassezia species were recorded. Isolates were identified by phenotypic methods and sequencing of the D1 and D2 region of rDNA. Neonates were not colonized at the time of entry in neonatal ICU or at birth. Nineteen (38 %) neonates were colonized with Malassezia species during their hospital stay. Among the infants, three (6 %) came to ICU with Malassezia colonization and 26 (52 %) acquired Malassezia during ICU stay. Mechanical ventilation, duration of hospital stay, central venous catheterization, and antifungal therapy were the significantly associated factors for colonization. Malassezia furfur was the most common species isolated from the skin of infants and neonates. Colonization by Malassezia species in infants and neonates in a hospital is not uncommon and can be a potential source of nosocomial infection.  相似文献   

4.
亚热带常绿阔叶林植物叶小枝的异速生长   总被引:2,自引:0,他引:2       下载免费PDF全文
 植物生态学研究的重要内容之一是识别和定量刻画种间生态变异的主要维数,叶大小小枝大小维(谱)是其中之一,目前的研究相对比较薄弱,两者之间是异速还是等速生长关系仍存在着争论。亚热带常绿阔叶林植物叶大小-枝大小维的研究报道很少。该文以我国东部亚热带典型区域福建梅花山常绿阔叶林的68种常绿乔灌木植物为对象,进行了叶-小枝关系及其生态意义的研究。结果表明:1)小枝茎截面积与叶干重、总叶面积和单叶面积之间的SMA斜率分别为1.29、1.23和1.18,呈现异速生长关系,支持叶大小 小枝大小为异速生长的相关研究结论,但SMA斜率低于预期值,其原因及生态意义有待进一步研究;2)小枝总叶面积与单叶面积呈显著正相关,而与叶片数量不相关,反映了小枝总叶面积的增加主要是由单叶面积大小决定的,可能与这一地区湿润气候有关;而单叶面积与枝条长度呈正相关则可能反映了植物对常绿阔叶林内较弱光照环境的适应;3)叶干重同小枝干重、叶面积为等速生长关系,可能反映了植物与动物之间代谢方式的差异。  相似文献   

5.
The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.  相似文献   

6.
The post-fire colonization of a Quercus ilex forest by epiphytic lichens has been studied in Catalonia (NE Spain), eleven years after a fire. Specific richness and lichen biomass have been studied separately on Quercus ilex , Erica arborea , Rosmarinus officinalis . and Cistus albidus , to reveal possible differences among phorophytes in facilitating lichen establishment. Shrubs play an important role in colonization by common species whereas the stools of Quercus ilex offer a suitable substratum for rarer species. Cistus albidus , with the highest lichen diversity and 98·2% of the total biomass of macrolichens, is the most suitable phorophyte for lichen establishment.  相似文献   

7.
Over the last few decades, shrub species have expanded rapidly in open tundra environments due to climate change. Previous experimental studies in this environment have shown that nutrient addition and, to a lesser extent, warming, had positive effects on shrub growth. However, the response of shrub species in open forested ecosystems such as lichen woodland is still largely unknown. The main objective of this study was to evaluate the performance of Betula glandulosa (Michx., dwarf birch) seedlings subjected to direct (warmer temperature, increased precipitation) and indirect (increased nutrient availability) effects of climate change in a lichen woodland (25 % tree cover). The study took place 10 km south of the subarctic treeline in western Québec (Canada). At the end of the second growth season, seedling leaf, woody stem and root biomass along with leaf area had increased significantly in response to nutrient addition. Moreover, seedlings exposed to nutrient addition had greater nitrogen, phosphorus and potassium concentrations in their leaves. Warming treatment also had a significant but weaker impact on leaf and woody stem biomass, while increase in precipitation had only a slight impact on seedling root biomass. Our results indicate that B. glandulosa response to simulated changes in the abiotic environment is similar to that observed in open tundra, suggesting that this species could also become more widespread in the forested ecosystems of the forest–tundra ecotone.  相似文献   

8.
Three long-term studies of lichen growth and colonization have been undertaken at Signy Island, South Orkney Islands, in the maritime Antarctic. Small individual thalli of several crustose species and uncolonized plots on 12 fresh rock surfaces were photographically monitored at intervals of 3–4 years over a period of up to 20 years. The development of Ochrolechia frigida colonies on a regenerating moss bank, recently uncovered by a receding glacier, was similarly monitored. The results indicate that many lichens growing in sites enriched by nitrogenous compounds derived from populations of sea birds, have relatively rapid colonization and growth rates. Mean percentage increase in thallus area can be as high as 15–32% per annum in some nitrophilous saxicolous species (e.g. Acarospora macrocyclos, Xanthoria elegans and species of Buellia and Caloplaca), but as low as 0·4–4% in nitrophobous species (Lecanora physciella, Lecidea sp., Rhizocarpon geographicum). Umbilicaria antarctica and Usnea antarctica also yielded data indicating high growth rates, with colonist plants reaching several centimetres after 20 years. Colonization by mixed assemblages of lichens of new rock surfaces can attain 40→90% cover after 20 years in nutrient-enriched sites, and even 20–25% in non-biotically influenced sites. Colonization by or increase in extant O. frigida on the regenerating moribund moss bank was also quite rapid. It is suggested that the ~exceptionally large thalli of several lichen species and the locally extensive dense lichen fellfield communities in the maritime Antarctic may be much younger than previously supposed.  相似文献   

9.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

10.
The meiofaunal community of artificial water-filled tree holes was determined, and the bottom-up effects of different amounts of leaf litter on abundance and diversity were estimated. We assume a positive impact of leaf litter on meiofaunal abundances, species diversity, and trophic links. Plastic cups with different amounts of leaf litter were placed in a beech forest (Teutoburg Forest, Bielefeld, Germany) for 24 weeks. As early as 1 week later, the artificial tree holes were colonized by bdelloid rotifers, tardigrades, and nematodes. Rotifers were dominant throughout the experiment, followed by nematodes and tardigrades. The 29 nematode species that were identified included bacterial and hyphal feeders, with common species such as Plectus cirratus/accuminatus and Aphelenchoides parietinus predominating. Impacts of water volume (up to complete desiccation), pH, and O2 on the meiofaunal community were not detected, whereas the addition of leaf litter resulted in bottom-up effects. Nematode abundance, especially that of bacterial feeders, and species number increased with increasing leaf input. The predatory nematode Prionchulus muscorum was found only in treatments containing high leaf content. Rotifer abundances were partly negatively affected by the amount of added leaves and, like tardigrades, showed a reversal in their correlation at higher leaf inputs. Our study revealed the fast colonization of small water bodies by meiofaunal organisms and the importance of passively distribution. Furthermore, the results provide a comparison with the meiofaunal community in lakes and soil.  相似文献   

11.
Aims: In a research programme for managing diseases caused by Botryis cinerea, four isolates of the antagonistic fungus Clonostachys rosea (Cr) were obtained from different ecosystems in Brazil. We studied ecological requirements for the colonization of strawberry leaves by these isolates. Methods and Results: Temperature effects on both mycelial growth in vitro and leaf colonization by Cr were studied. At 10°C, growth on potato dextrose agar and colonization of leaf discs were poor. Optimum temperature for mycelial growth and leaf colonization was around 25°C. The isolates were applied to leaves which were exposed to 0–48 h intervals of moisture. They were also applied to leaves which remained from 0 to 36 h without wetness. All isolates efficiently colonized leaves, regardless of moisture interval or the delay to begin wetness. Although all isolates survived in green leaves of whole plants, colonization decreased throughout a 49‐day period. Conclusions: Brazilian isolates of Cr can establish and colonize strawberry leaves under a wide range of temperature and moisture conditions. Significance and Impact of the Study: It is expected that the Brazilian isolates of Cr will establish efficiently in strawberry leaves where they can compete with B. cinerea.  相似文献   

12.
A prospective, cross-sectional study was conducted at a medical center in central Taiwan to understand the prevalence, associated factors, and microbiologic features for oropharyngeal yeast colonization in human immunodeficiency virus-infected outpatients. Oral yeast colonization was detected in 127 (45 %) patients, including 21 (16.5 %) colonized by more than one species. Of the 154 isolates, Candida albicans was the most common species (114, 74 %), followed by Candida dubliniensis (10, 6.5 %), Candida glabrata (10, 6.5 %), Candida tropicalis (7, 4.5 %), and 13 others. We found that receiving antituberculous drug (p = 0.046) or atazanavir (p = 0.045) was two predictors for patients colonized by non-C. albicans species (p = 0.005) and risking mixed yeast colonization (p = 0.009). Even though our data showed that clinical antifungal drugs remained effective in vitro against the colonizing yeasts, the increased mixed yeast colonization indicates a potential issue for controlling mixed infections in hospital settings.  相似文献   

13.
Endophytic fungi are known to play important ecological roles in protecting plants from various abiotic and biotic stresses. Therefore, it is valuable to investigate the endophytic fungal community associated with plants distributed in harsh environments, such as deserts. Fungal communities in the stems and leaves of ten plant samples belonging to eight species were collected from a desert area in China and tested after plant surface sterilization. The fungal compositions were different among plants. Salsola collina, Suaeda salsa, and Coriospermum declinatum possessed the highest fungal richness. The colonization rates of these samples were high, exceeding 50% in eight of the samples. However, the fungal diversity of the samples was low when measured using Shannon??s index, Fisher??s ??, and Simpson??s index. Alternaria alternata, A. franseriae, Fusarium solani, and a second Fusarium species were most frequently isolated from all samples. The diversity of isolated species was low in desert areas, although the colonization rate was relatively high. It was concluded that fungal communities associated with plants in deserts had low diversity, but a small number of species colonized various plants with a high colonization rate. The Jaccard, Sorensen, and Bray?CCurtis similarity indices for the fungal communities were low between stems and leaves. This indicated that different fungal communities colonized these two tissues. Phoma pomorum and Phoma sp. showed tissue preferences.  相似文献   

14.
We quantitatively compared phenology and water relations of a fully deciduous shrub, Styrax officinalis, and an evergreen shrub, Arctostaphylos glauca, in shared microsites in a sandstone outcrop in southern California during a multi-year drought. Pre-dawn xylem pressure potentials, Ψpd, were similar for the two species during most months of 2 years, but occasional differences and watering experiment results suggest S. officinalis may have phreatophytic roots that tap water in deep rock cavities and joint traces, while A. glauca may have primarily shallow roots. Neither species varied in maximum or minimum Ψpd between years of very different rainfall totals. Twig elongation and leaf production of S. officinalis began earlier during spring, and its leaves matured more quickly and more synchronously than A. glauca. Leaves lived a mean of 180 days for S. officinalis and 849 days for A. glauca. Leaf life spans varied among years in both species. S. officinalis leaf senescence occurred mostly in August and September and was not discernibly related to Ψpd or drought avoidance. A. glauca leaf senescence occurred throughout the year, but especially coincided with leaf production. In A. glauca most senescence occurred at the beginning of a leaf cohort's third growing season, but numbers of retained older leaves increased during 4 years of drought. Timing of twig elongation and leaf and flower production appeared to be related to current rainfall, but amount of twig growth and numbers of leaves and flowers produced appeared to be related to rainfall of the previous year or years for S. officinalis and, more complexly, A. glauca. Because of an interrupted pattern of flower production, number of flowers produced by A. glauca may be responsive to rainfall amounts during two environmental periods. Morphological differences, including much higher above ground allocation, many more leaves/twig, lower allocation to stem mass, and longer duration of leaves/year in A. glauca, are probably responsible for A. glauca having >6 times more above ground biomass per plant than S. officinalis. During the multi-year drought S. officinalis changed little, indicating either superb adaptation or growth pattern rigidity, while A. glauca underwent extensive phenological and morphological changes, indicating either stress or adaptive flexibility.  相似文献   

15.
Summary The colonization of leaf litter by testate amoebae in a cool temperate deciduous forest was studied over the first 60 months of decomposition. No colonization of fresh leaf litter by Testacea was recorded before the first spring thaw period. Colonization of aspen and balsam leaves was similar in terms of species and numbers of species, with the balsam litter being colonized by slightly fewer species. In the aspen litter bags, all the L-layer species were present after 18 months, and all the species recorded in all soil layers were found after 60 months. The proportion of species which constructed their tests from platelets rather than sediment was 70% of the total number of species for the first 36 months of colonization of both litter types. After 60 months, seven species comprised 70% of the total numbers of Testacea but only 33–38% of the total biomass. Significant, positive correlation existed between the dry weight loss of leaf litter and the total number of active Testacea, the total number of living Testacea, and the total number of species present. The prime limitations to testacean colonization of decomposing leaf litter appeared to be substrate quality, food supply and/or availability of test-building materials.  相似文献   

16.
Westoby M  Wright IJ 《Oecologia》2003,135(4):621-628
There is a spectrum from species with narrow, frequently branched twigs carrying small leaves and other appendages, to species with thick twigs carrying large leaves and appendages. Here we investigate the allometry of this spectrum and its relationship to two other important spectra of ecological variation between species, the seed mass-seed output spectrum and the specific leaf area-leaf lifespan spectrum. Our main dataset covered 33 woody dicotyledonous species in sclerophyll fire-prone vegetation on low nutrient soil at 1,200 mm annual rainfall near Sydney, Australia. These were phylogenetically selected to contribute 32 evolutionary divergences. Two smaller datasets, from 390 mm annual rainfall, were also examined to assess generality of cross-species patterns. There was two to three orders of magnitude variation in twig cross-sectional area, individual leaf size and total leaf area supported on a twig across the study species. As expected, species with thicker twigs had larger leaves and branched less often than species with thin twigs. Total leaf area supported on a twig was mainly driven by leaf size rather than by the number of leaves. Total leaf area was strongly correlated with twig cross-section area, both across present-day species and across evolutionary divergences. The common log-log slope of 1.45 was significantly steeper than 1. Thus on average, species with tenfold larger leaves supported about threefold more leaf area per twig cross-section, which must have considerable implications for other aspects of water relations. Species at the low rainfall site on loamy sand supported about half as much leaf area, at a given twig cross-section, as species at the low rainfall site on light clay, or at the high rainfall site. Within sites, leaf and twig size were positively correlated with seed mass, and negatively correlated with specific leaf area. Identifying and understanding leading spectra of ecological variation among species is an important challenge for plant ecology. The seed mass-seed output and specific leaf area-leaf lifespan spectra are each underpinned by a single, comprehensible trade-off and their consequences are fairly well understood. The leaf-size-twig-size spectrum has obvious consequences for the texture of canopies, but we are only just beginning to understand the costs and benefits of large versus small leaf and twig size.  相似文献   

17.
Using a phyllosphere model system, we demonstrated that the term ‘carrying capacity'', as it is commonly used in microbial ecology, needs to be understood as the sum of many ‘local carrying capacities'' in order to better explain and predict the course and outcome of bacterial colonization of an environment. Using a green fluorescent protein-based bioreporter system for the quantification of reproductive success (RS) in individual Erwinia herbicola cells, we were able to reconstruct the contribution of individual immigrants to bacterial population sizes on leaves. Our analysis revealed that plant foliage represents to bacteria an environment where individual fate is determined by the local carrying capacity of the site where an immigrant cell lands. With increasing inoculation densities, the RS of most immigrants declined, suggesting that local carrying capacity under the tested conditions was linked to local nutrient availability. Fitting the observed experimental data to an adapted model of phyllosphere colonization indicated that there might exist three types of sites on leaves, which differ in their frequency of occurrence and local carrying capacity. Specifically, our data were consistent with a leaf environment that is characterized by few sites where individual immigrants can produce high numbers of offspring, whereas the remainder of the leaf offered an equal number of sites with low and medium RS. Our findings contribute to a bottom–up understanding of bacterial colonization of leaf surfaces, which includes a quantifiable role of chance in the experience at the individual level and in the outcome at the population level.  相似文献   

18.
An experiment was conducted to introduce the entomopathogen Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) as an endophyte in jute (Corchorus olitorius), a bast fibre crop through seed treatment. Colonization of root, leaf, stem, capsule, and seed were assessed through plating on selective medium and PCR based detection using B. bassiana specific SCAR markers. Endophytic colonization was detected in all the plants grown from treated seeds, but all the plant parts were not colonized. Colonization was detected in leaves, stems, and green capsules but not in roots and seeds. The endophytic colonization was influenced by both plant part and sampling period. Colonization was greater in leaves (55.87%) compared to stems (12.53%) and capsules (42.44%). The percent colonization was higher in case of 60?days old plants (43.34%) than in 30?days (23.89%) and 120?days (35.39%) old plants. As B. bassiana has already been reported to be pathogenic on jute pests, namely semilooper (Anomis sabulifera) and bihar hairy caterpillar (Spilosoma obliqua), its season long endophytic colonization within jute plant suggests a novel approach of biological control of these pests through seed treatment with the entomopathogen.  相似文献   

19.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

20.
《Biological Control》2001,20(1):16-22
Numbers of ants moving on trunks of oak trees and successive visits of workers of the forest ant Formica neogagates Emery to leaves of black birch trees were recorded in the forest. Ants were found to search systematically because they tended to move in the same direction on a twig before and after visiting a leaf. However, many leaves were skipped, and the probability of visiting an encountered leaf was about 0.5. Data were used to develop a computer model of ant foraging on leaves and twigs of trees. It was found that reasonable model outputs of numbers of leaves skipped between visits and the number of new leaves visited, as the total number of visits increased, could be obtained only if ants were assumed to partially avoid leaves that they had previously visited. Model results implied that 100 ants in a tree foraging for about 3 h should be able to visit about one quarter of the leaves in a tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号