首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermolecular transglycosylating reaction of cyclodextrin glucanotransferase ([EC 2.4.1.19]; CGTase) immobilized on a capillary membrane was investigated using low molecular weight substrates such as cyclodextrin (CD), maltooligosaccharide (MOS), and a CD-MOS mixture. The immobilized CGTase catalyzed the conversion reaction of α-CD to β-CD and MOS or β-CD to α-CD and MOS within a short residence time. The conversion ratio increased as the amount of immobilized CGTase increased. The addition of glucose, maltose, and sucrose as acceptors in the substrate solution containing CD resulted in the acceleration of CD degradation compared with only CD substrate. Furthermore, the MOS substrate (degree of polymerization =2–6) was disproportionated with a conversion ratio exceeding 70% by the immobilized CGTase. These data demonstrate that immobilized CGTase can catalyze intermolecular transglycosylation between low molecular substrates in a few minutes by regulating the amount of immobilized enzyme and the residence time. This might contribute to our comprehension of CGTase-immobilized bioreactors for CD production as well as to the development of new glycosides through its excellent transglycosylation ability.  相似文献   

2.
Production of cyclodextrins (CDs) by immobilized cells of the alkaliphilic Bacillus agaradhaerens LS-3C with integrated product recovery was studied. The microorganism was entrapped in polyvinyl alcohol-cryogel beads and used as a convenient source of immobilized cyclodextrin glycosyltransferase (CGTase). On activation by incubation in the cultivation medium containing 1% (w/v) starch, the entrapped cells multiplied and secreted CGTase with an activity of 2–3 mg -cyclodextrin h–1 g–1 beads. The immobilized biocatalyst exhibited maximum activity at pH 9 and 50 °C, and formed cyclodextrins comprising 92–94% -CD and remaining -CD. The cyclodextrin product from the immobilized cell bioreactor was continuously recovered by adsorption to Amberlite XAD-4 in a recycle batch mode. The product adsorption was facilitated at low temperature while hot water was used for elution.  相似文献   

3.
Cells of obligated alkaliphiles Bacillus pseudalcaliphilus 20RF and Bacillus pseudalcaliphilus 8SB isolated from Bulgarian habitats, producers of cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19), were immobilized by three different techniques: on two types of polysulphone membranes; entrapped in agar-gel beads containing magnetite and by nano-particles of silanized magnetite covalently bound on the cell surface. The biocatalysts obtained demonstrated the opportunity for a significantly enhanced CGTase production compared to free cells for a long period of time (10 days semicontinuous cultivation) without impact on their mechanical stability. The cell membrane-biocatalysts exhibited the highest enzyme activity after 240 h repeated batch cultivation and retained 1.3–2.3-fold increase of the CGTase yield compared to free cells at the end of the process. Membrane biocatalysts were applied for a direct cyclodextrin (CD) production. The results obtained demonstrated the possibility of starch conversion into cyclodextrins by immobilized cells without using of crude or purified enzyme. The membrane biocatalysts of both obligated alkaliphiles formed mainly β- and γ-CDs after 6 h enzyme reaction at pH 9.0 of the reaction mixture. Under these conditions, the quantity of γ-CDs was a relative high, to 35–37% of the total CD amount.  相似文献   

4.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) fused with 10 lysine residues at its C-terminus (CGTK10ase) was immobilized onto a cation exchanger by ionic interaction and used to produce -cyclodextrin (CD) from soluble starch. Poly-lysine fused immobilization increased the Vm of the immobilized CGTase by 40% without a change in Km. The activation energies of thermal deactivation (Ea) were 41.4, 28.1, and 25.9 kcal mol−1, respectively, for soluble wild-type (WT) CGTase, soluble CGTK10ase, and immobilized CGTK10ase, suggesting destabilization of CGTase by poly-lysine fusion and immobilization onto a cation exchanger. Maximum -CD productivity of 539.4 g l−1 h−1 was obtained with 2% soluble starch solution which was constantly fed at a flow rate of 4.0 ml min−1 (D = 240 h−1) in a continuous operation mode of a packed-bed reactor. The operational half-life of the packed-bed enzyme reactor was estimated 12 days at 25 °C and pH 6.0.  相似文献   

5.
The cyclodextrin glucanotransferase (CGTase) gene (cgt) from Bacillus circulans 251 was cloned into plasmid pYD1, which allowed regulated expression, secretion, and detection. The expression of CGTase with a-agglutinin at the N-terminal end on the extracellular surface of Saccharomyces cerevisiae was confirmed by immunofluorescence microscopy. This surface-anchored CGTase gave the yeast the ability to directly utilize starch as a sole carbon source and the ability to produce the anticipated products, cyclodextrins, as well as glucose and maltose. The resulting glucose and maltose, which are efficient acceptors in the CGTase coupling reaction, could be consumed by yeast fermentation and thus facilitated cyclodextrin production. On the other hand, ethanol produced by the yeast may form a complex with cyclodextrin and shift the equilibrium in favor of cyclodextrin production. The yeast with immobilized CGTase produced 24.07 mg/ml cyclodextrins when it was incubated in yeast medium supplemented with 4% starch.  相似文献   

6.
The cyclodextrin glucanotransferase (CGTase) gene (cgt) from Bacillus circulans 251 was cloned into plasmid pYD1, which allowed regulated expression, secretion, and detection. The expression of CGTase with a-agglutinin at the N-terminal end on the extracellular surface of Saccharomyces cerevisiae was confirmed by immunofluorescence microscopy. This surface-anchored CGTase gave the yeast the ability to directly utilize starch as a sole carbon source and the ability to produce the anticipated products, cyclodextrins, as well as glucose and maltose. The resulting glucose and maltose, which are efficient acceptors in the CGTase coupling reaction, could be consumed by yeast fermentation and thus facilitated cyclodextrin production. On the other hand, ethanol produced by the yeast may form a complex with cyclodextrin and shift the equilibrium in favor of cyclodextrin production. The yeast with immobilized CGTase produced 24.07 mg/ml cyclodextrins when it was incubated in yeast medium supplemented with 4% starch.  相似文献   

7.
We found a novel cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. G-825-6. The enzyme was expressed in the culture broth by recombinant Bacillus subtilis KN2 and was purified and characterized. The enzyme named CGTase825-6 showed 95% amino acid sequence identity with a known enzyme β-/γ-CGTase from Bacillus firmus/lentus 290-3. However, the product specificity of CGTase825-6 differed from that of β-/γ-CGTase. CGTase825-6 produced γ-cyclodextrin (CD) as the main product, but degradation of γ-CD was observed with prolonged reaction. The product specificity of the enzyme was positioned between γ-CGTase produced by Bacillus clarkii 7364 and B. firmus/lentus 290-3 β-/γ-CGTase. It showed that the difference of product specificity was dependent on only 28 amino acid residues in 671 residues in CGTase825-6. We compared the amino acid sequence of CGTase825-6 and those of other CGTases and constructed a protein structure model of CGTase825-6. The comparison suggested that the diminished loop (Val138-Asp142) should provide subsite -8 for γ-CD production and that Asp142 might have an important role in product specificity. CGTase825-6 should be a useful tool to produce γ-CD and to study the differences of producing mechanisms between γ-CD and β-CD.  相似文献   

8.
研究了一种α-环糊精葡萄糖基转移酶的固定化和固定化酶的性质。通过对戊二醛浓度、酶量和交联时间各单因素的考察,确定了最佳的固定化条件。与游离酶相比,以DEAE纤维素为载体的固定化酶最适pH向酸性偏移,最适温度不变,pH稳定性和热稳定性都有所提高。在40℃、150r/min下反应3h,转化率可以达到32%。固定化酶可以连续使用4次以上。固定化酶在4℃、5mmol/L CaCl2溶液里保存18d,还剩余80%以上的活力。  相似文献   

9.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) was used to convert dodecyl-β-maltoside (DDM) to dodecyl-β-maltooctaoside (DDMO) using α-cyclodextrin (α-CD) or starch as glycosyl donors. At 300 mM α-CD, varied DDM concentration and 60 °C, the reaction obeyed Michaelis-Menten kinetics with a Km value of 18 mM and a Vmax value of 100 U/mg enzyme. However, at 25 mM α-CD the reaction rate decreased with increasing DDM concentration (5-50 mM), and when the α-CD concentration was varied at fixed DDM concentration an S shaped curve was obtained. The deviations from Michaelis-Menten kinetics were interpreted as being caused by formation of inclusion complexes between α-CD and DDM and by micellation of DDM. To achieve a high reaction rate, a high concentration of free α-CD is necessary, since α-CD in the form of a complex has low reactivity. When starch is used as glycosyl donor in the CGTase catalyzed alkyl glycoside elongation reaction, it is thus important to choose reaction conditions under which the cyclization of starch to α-CD is efficient.  相似文献   

10.
An enzyme reactor installed with ultrafiltration membrane was developed to produce alpha-, beta-, and gamma-cyclodextrins (CDs) from soluble starch by Bacillus macerans cyclodextrin glycosyltransferase (CGTase) tagged with 10 lysines at its C-terminus (CGTK10ase). Ultrafiltration membrane YM10 with 10,000 of molecular cutoff was chosen for membrane modification and CD production. A repeated-batch type of the enzyme reaction with free CGTK10ase resulted in a alpha-CD yield of 24.0 (+/-1.5)% and a productivity of 4.68 (+/-0.88) g/l-h, which were 7 times higher that those for CGTK10ase immobilized on modified YM10 membrane. Addition of 1- nonanol increased CD yields by 30% relative to the control, which might be due to prevention of the reversible hydrolysis of CDs.  相似文献   

11.
Interconversion reactions of cyclodextrin glycosyltransferase (CGTase) among cyclodextrin (CD) homologues were experimentally investigated using each CD as a substrate in an aqueous, two-phase-forming polymer solution of dextran and polyethylene glycol. Degradation rate of -CD was highest and that of -CD was lowest among -, - and -CD with Bacillus macerans CGTase. Degradation of each CD was accelerated with dextran, while decelerated with polyethylene glycol.  相似文献   

12.
Cyclodextrin glucanotransferase (CGTase) fromThermoanaerobacter sp. was adsorbed on the ion exchange resin Amberlite IRA-900. The optimum conditions for the immobilization of the CGTase were pH 6.0 and 600 U CGTase/g resin, and the maximum yield of immobilization was around 63% on the basis of the amount ratio of the adsorbed enzyme to the initial amount in the solution. Immobilization of CGTase shifted the optimum temperature for the enzyme to produce transglycosylated xylitol from 70°C to 90°C and improved the thermal stability of immobilized CGTase, especially after the addition of soluble starch and calcium ions. Transglycosylated xylitol was continuously produced using immobilized CGTase in the column type packed bed reactor, and the operating conditions for maximum yield were 10% (w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10% (w/v) xylitol as the glycosyl acceptor, 20 mL/h of medium flow rate, and 60°C. The maximum yield of transglycosylated xylitol and productivity were 25% and 7.82 g·L−1·h−1, respectively. The half-life of the immobilized CGTase in a column type packed bed reactor was longer than 30 days.  相似文献   

13.
一种α-环糊精葡萄糖基转移酶的纯化及性质研究   总被引:1,自引:1,他引:1  
本文报道了一种主要转化产物是α-环糊精的环糊精葡萄糖基转移酶的纯化、酶学性质和转化特性。将发酵上清液通过硫酸铵分级沉淀、疏水柱层析和离子交换层析获得表观电泳纯的酶蛋白。纯酶的分子量约为75KDa,等电点5.3。最适反应温度为50℃,最适反应pH为6。对可溶性淀粉的Km值和Vmax分别是50mg/ml和6.07 mg/ml/min。色氨酸残基为酶活力的必需基团。酶的N末端序列为-SPDTSVDNKV-。Ca2+、Zn2+、Fe3+、Cu2+、Fe2+、Ag+对酶活力有强烈抑制作用。纯酶催化转化条件试验表明,廉价的马铃薯淀粉是酶催化制备α-CD的适宜底物,最佳转化条件为:酶量200u/g淀粉,温度40℃,反应时间24h,总转化率达41%,其中α-环糊精占总转化产物的78%。因此,该酶不仅表现出特殊的酶学特性,而且有较好的产业化开发前景。  相似文献   

14.
The cells of Bacillus circulans (ATCC 21783) immobilized in sodium alginate gel matrix were able to synthesize the extracellular enzyme, Cyclodextrin glycosyl transferase (CGTase, E.C. 2.4.1.19) which is industrially employed for the preparation of cyclodextrins. Optimization for the maximum production of enzyme was carried out by varying the cell density (3.3–53.5 kg/m3) in the gel and the incubation temperature (30°–42°C). The CGTase activity was found to be the highest (45 units/cm3) with maximum cell loading at 37°C. The reusability of immobilized cells was ascertained by repeated batch experiments. The enzyme activity exhibited was in the range of 50 to 55 units/cm3 in each batch. The continuous synthesis of CGTase by immobilized cells has been demonstrated by operating a fluidized bed reactor at a dilution rate 1.1 · 10–4 sec–1 for a period of 15 days. The enzyme activity has decreased to 42.5 units/cm3 from an initial value of 61 units/cm3 during continuous operation.The authors are grateful to Dr. A.D. Damodaran, Director, Regional Research Laboratory, Trivandrum for his keen interest and encouragement and to Department of Biotechnology, Government of India, New Delhi for financial support.  相似文献   

15.
A simple and specific recovery method for α-cyclodextrin (α-CD) was developed by employing co-digestion of CD reaction mixtures with CGTase fromBacillus ohbensis and α-glucosidase. The combination of CGTase fromB. ohbensis and α-glucosidase, such as α-amylase, β-amylase, or glucoamylase was examined for the selective degradation of β-and γ-CD in the CD reaction mixture formed by CGTase fromB. macerans. The co-digestion of the CD mixture with Taka-amylase and the CGTase resulted in α-CD and maltodextrins, the combination with β-amylase resulted in α-CD and maltose, and that with glucoamylase resulted in α-CD and glucose. The conditions of selective degradation of β- and γ-CD by co-digestion with the CGTase and glucoamylase were optimized as follows: the incubation pH, 5.5; incubation temperature, 50°C; CGTase concentration, 15 u/g of substrate; glucoamylase, 10 u/g of substrate; substrate concentration, 10% (w/v); the incubation time was fixed for 18 hr from the stand point of operation convenience. Most part of the content was presented in poster session at the 7th International Cyclodextrin Symposium, Tokyo, April 1994.  相似文献   

16.
Cyclodextrin glucanotransferase (CGTase) from Bacillus circulans (ATCC 21783) was immobilised on a silica-based support: purified seasand. Although adsorption of 98% was achieved, considerable desorption was encountered. This problem was minimised by crosslinking the adsorbed enzyme with glutaraldehyde. The immobilised enzyme after crosslinking could be used repeatedly for cyclodextrin (CD) production in a batch process. The activity retention was 80% at the end of the eighth cycle. The immobilised enzyme showed a shift in the pH optimum towards the alkaline side and also an improvement in the pH stability compared to the free enzyme. It catalysed the formation of β-CD as a major product. A significant amount of α-CD production was also observed on prolonged incubation. Electronic Publication  相似文献   

17.
The extreme thermophilic cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. was covalently attached to Eupergit C. Different immobilization parameters (incubation time, ionic strength, pH, ratio enzyme/support, etc.) were optimized. The maximum yield of bound protein was around 80% (8.1 mg/g support), although the recovery of β-cyclodextrin cyclization activity was not higher than 11%. The catalytic efficiency was lower than 15%. Results were compared with previous studies on covalent immobilization of CGTase.

The enzymatic properties of immobilized CGTase were investigated and compared with those of the soluble enzyme. Soluble and immobilized CGTases showed similar optimum temperature (80–85 °C) and pH (5.5) values, but the pH profile of the immobilized CGTase was broader at higher pH values. The thermoinactivation of the CGTase coupled to Eupergit C was slower than the observed with the native enzyme. The half-life of the immobilized enzyme at 95 °C was five times higher than that of the soluble enzyme. The immobilized CGTase maintained 40% of its initial activity after 10 cycles of 24 h each. After immobilization, the selectivity of CGTase (determined by the ratio CDs/oligosaccharides) was notably shifted towards oligosaccharide production.  相似文献   


18.
The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60°C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% β-cyclodextrin (CD) and 10% γ-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of β-CD.  相似文献   

19.
Cyclodextrin glycosyltransferase (CGTase) was found to be severely inhibited by cyclodextrins. In order to increase the conversion yield by reducing product inhibition and reuse the CGTase in the production of cyclodextrins from milled corn starch, an ultrafiltration membrane bioreactor system was employed. In a batch operation with ultrafiltration, the conversion yield was increased 57% compared with that without ultrafiltration. Operating conditions for the continuous production of cyclodextrins in the membrane bioreactor were optimized by taking into consideration the filtration rate and the conversion yield as follows: initial starch concentration, 7% (w/v); starch feeding rate, 240 mg/h; CGTase loading, 350 units/initial gram starch. When cyclodextrins were continuously produced in the membrane bioreactor under optimized conditions, 340 units of CGTase was require to produce 1 g of cyclodextrins for 48 h, while in the case of conventional batch operation, 1 g of cyclodextrins was produced for 24 h by 1410 units of CGTase. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
Novamyl is a thermostable five-domain maltogenic alpha-amylase that shows sequence and structural homology with the cyclodextrin glycosyltransferases (CGTases). Comparing X-ray crystal structures of Novamyl and CGTases, two major differences in the active site cleft were observed: Novamyl contains a loop insertion consisting of five residues (residues 191-195) and the location of an aromatic residue known to be essential to obtain an efficient cyclization reaction. To convert Novamyl into a cyclodextrin (CD)-producing enzyme, the loop was deleted and two substitutions, F188L and T189Y, were introduced. Unlike the parent Novamyl, the obtained variant is able to produce beta-CD and showed an overall conversion of starch to CD of 9%, compared with CGTases which are able to convert up to 40%. The lower conversion compared with the CGTase is probably due to additional differences in the active site cleft and in the starch-binding E domain. A variant with only the five-residue loop deleted was not able to form beta-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号