首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial.  相似文献   

2.
This study compared the effects of the human 70-kDa stress protein (Hsp70) peptide, TKDNNLLGRFELSG (TKD), proinflammatory cytokines, or a combination of both on the repertoire of receptors expressed by human natural killer (NK) cells and their capacity to kill human CX colon carcinoma cells, K562 erythroleukemic cells, and leukemic blasts from two patients with acute myelogenous leukemia. Low-dose interleukin (IL) 2/IL-15 and TKD increase the expression density of activatory (NKG2D, NKp30, NKp44, NKp46, CD94/NKG2C) and inhibitory (CD94/NKG2A) receptors on NK cells. Concomitantly, IL-2/TKD treatment enhances the cytotoxicity of NK cells (as reflected by their secretion of granzyme B) against Hsp70 membrane-positive and human leukocyte antigen (HLA)-E membrane-negative (Hsp70+/HLA-E) CX+ and K562 cells. However, it had no effect on the responsiveness to Hsp70/HLA-E CX cells over that induced by IL-2 alone. The cytotoxicity of IL-2/TKD-activated, purified NK cells and peripheral blood mononuclear cells against Hsp70+/HLA-E+ leukemic blasts was weaker than that against Hsp70+/HLA-E K562 cells. Hsp70-blocking and HLA-E transfection experiments confirmed membrane-bound Hsp70 as being a recognition/activatory ligand for NK cells, as cytotoxicity was reduced by the presence of the anti-Hsp70 monoclonal antibody cmHsp70.2 and by inhibiting Hsp70 synthesis using short interference ribonucleic acid. HLA-E was confirmed as an inhibitory ligand, as the extent of NK cell-mediated lysis of K562 cell populations that had been transfected with HLA-ER or HLA-EG alleles was dependent on the proportion of HLA-E-expressing cells. These findings indicate that Hsp70 (as an activatory molecule) and HLA-E (as an inhibitory ligand) expression influence the susceptibility of leukemic cells to the cytolytic activities of cytokine/TKD-activated NK cells.  相似文献   

3.
During childhood, infections with cytomegalovirus (CMV) and Epstein-Barr virus (EBV) can occur in close temporal proximity. Active, as well as latent, CMV infection is associated with enlarged subsets of differentiated natural killer (NK) and cytotoxic T cells. How EBV infection may influence CMV-driven immune differentiation is not known. We found that EBV coinfection selectively influenced the NK cell compartment of CMV-seropositive (CMV+) children. Coinfected children had significantly higher proportions of peripheral-blood NKG2C+ NK cells than CMV+ EBV children. Ex vivo NK cell degranulation after target cell stimulation and plasma IL-15 levels were significantly higher in CMV+ children. EBV coinfection was related to the highest levels of plasma interleukin-15 (IL-15) and IL-12p70. Remarkably, in vitro EBV infection of peripheral blood mononuclear cells (PBMC) from EBV CMV+ children increased NKG2C+ NK cell proportions. A similar tendency was seen in cocultures of PBMC with EBV+ lymphoblastoid B-cell lines (LCL) and IL-15. After K562 challenge, NKG2C+ NK cells excelled in regard to degranulation and production of gamma interferon, regardless of whether there was previous coculture with LCL. Taken together, our data suggest that dual latency with these herpesviruses during childhood could contribute to an in vivo environment supporting differentiation and maintenance of distinct NK cell populations. This viral imprint may affect subsequent immune responses through altered distributions of effector cells.  相似文献   

4.
Expression of surface NKG2D ligands on tumour cells, which activates nature killer (NK) cells and CD8+ T cells, is crucial in antitumour immunity. Some types of tumours have evolved mechanisms to suppress NKG2D‐mediated immune cell activation, such as tumour‐derived soluble NKG2D ligands or sustained NKG2D ligands produced by tumours down‐regulate the expression of NKG2D on NK cells and CD8+ T cells. Here, we report that surface NKG2D ligand RAE1ε on tumour cells induces CD11b+Gr‐1+ myeloid‐derived suppressor cell (MDSC) via NKG2D in vitro and in vivo. MDSCs induced by RAE1ε display a robust induction of IL‐10 and arginase, and these MDSCs show greater suppressive activity by inhibiting antigen‐non‐specific CD8+ T‐cell proliferation. Consistently, upon adoptive transfer, MDSCs induced by RAE1ε significantly promote CT26 tumour growth in IL‐10‐ and arginase‐dependent manners. RAE1ε moves cytokine balance towards Th2 but not Th1 in vivo. Furthermore, RAE1ε enhances inhibitory function of CT26‐derived MDSCs and promotes IL‐4 rather than IFN‐γ production from CT26‐derived MDSCs through NKG2D in vitro. Our study has demonstrated a novel mechanism for NKG2D ligand+ tumour cells escaping from immunosurveillance by facilitating the proliferation and the inhibitory function of MDSCs.  相似文献   

5.
6.
Mesenchymal stem cells (MSCs) as a therapeutic promise are often quickly cleared by innate immune cells of the host including natural killer (NK) cells. Efforts have been made to generate immune-escaping human embryonic stem cells (hESCs) where T cell immunity is evaded by defecting β-2-microglobulin (B2M), a common unit for human leukocyte antigen (HLA) class I, and NK cells are inhibited via ectopic expression of HLA-E or -G. However, NK subtypes vary among recipients and even at different pathologic statuses. It is necessary to dissect and optimize the efficacy of the immune-escaping cells against NK subtypes. Here, we first generated B2M knockout hESCs and differentiated them to MSCs (EMSCs) and found that NK resistance occurred with B2M-/- EMSCs expressing HLA-E and -G only when they were transduced via an inducible lentiviral system in a dose-dependent manner but not when they were inserted into a safe harbor. HLA-E and -G expressed at high levels together in transduced EMSCs inhibited three major NK subtypes, including NKG2A+/LILRB1+, NKG2A+/LILRB1-, and NKG2A-/LILRB1+, which was further potentiated by IFN-γ priming. Thus, this study engineers MSCs with resistance to multiple NK subtypes and underscores that dosage matters when a transgene is used to confer a novel effect to host cells, especially for therapeutic cells to evade immune rejection.  相似文献   

7.
《Cytotherapy》2020,22(8):450-457
Background aimsSeveral methods to expand and activate (EA) NK cells ex vivo have been developed for the treatment of relapsed or refractory cancers. Infusion of fresh NK cells is generally preferred to the infusion of cryopreserved/thawed (C/T) NK cells because of concern that cryopreservation diminishes NK cell activity. However, there has been little head-to-head comparison of the functionality of fresh versus C/T NK cell products.MethodsWe evaluated activity of fresh and C/T EA NK cells generated by interleukin (IL)-15, IL-2 and CD137L expansion.ResultsAnalysis of C/T NK cell products demonstrated decreased recovery of viable CD56+ cells, but the proportion of NK cells in the C/T EA NK cell product did not decrease compared with the fresh EA NK cell product. Fresh and C/T EA NK cells demonstrated increased granzyme B compared with NK cells pre-expansion, but only fresh EA NK cells showed increased NKG2D. Compared with fresh EA NK cells, cytotoxic ability of C/T EA NK cells was reduced, but C/T EA NK cells remained potently cytotoxic against tumor cells via both antibody-independent and antibody-dependent mechanisms within 4 h post-thaw. Fresh EA NK cells generated high levels of gamma interferon (IFN-γ), which was abrogated by JAK1/JAK2 inhibition with ruxolitinib, but C/T EA NK cells showed lower IFN-γ unaffected by JAK1/JAK2 inhibition.DiscussionUsage of C/T EA NK cells may be an option to provide serial “boost” NK cell infusions from a single apheresis to maximize NK cell persistence and potentially improve NK-induced responses to refractory cancer.  相似文献   

8.
Natural killer (NK) cell function, based on the expression of activating and inhibitory natural killer receptors (NKRs), may become abnormal during human immunodeficiency virus (HIV) infection. In this study, we investigated changes in receptor expression with individual and combinational analysis on NK cell subsets in HIV-infected Chinese. The results showed that natural killer group 2 member D (NKG2D) expression on total NK cells decreased significantly in HIV infection, while the expressions of natural killer group 2 member A (NKG2A) and killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail 1 (KIR3DL1) on total NK cells were not significantly different between any of the groups including HIV-positive treatment-naïve group, AIDS treatment-naïve group, HAART-treatment AIDS group and HIV-negative control group. Individual analysis of NKG2A+ and KIR3DL1+ cells revealed no significant differences in expression in any NK cell subsets between any of the groups, but the combinational analysis of NKG2DNKG2A+, and NKG2DKIR3DL1+ on the NK CD56dim cell subset in the AIDS group were increased compared to the HIV-negative control group. On the contrary, NKG2DNKG2A+ expression on the CD56bright subset decreased in the AIDS group compared to the control group. Highly active antiretroviral therapy (HAART) treatment almost completely restored the levels of these receptor expressions. The results indicate that the distinct alteration of activating and inhibitory NKR expression on NK cells and its subsets occurred during HIV progression. Moreover, the imbalanced change of activating and inhibitory NKRs on NK cells and its subsets may explain the impaired NK cell immunity in HIV infected individuals.  相似文献   

9.
10.
11.
Background aimX-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect' (XMEN) disease is caused by mutations in the magnesium transporter 1 (MAGT1) gene. Loss of MAGT1 function results in a glycosylation defect that abrogates expression of key immune proteins such as the NKG2D receptor on CD8+ T and NK cells, which is critical for the recognition and killing of virus-infected and transformed cells, a biomarker for MAGT1 function. Patients with XMEN disease frequently have increased susceptibility to EBV infections and EBV-associated B cell malignancies, for which no specific treatment options are currently available. Experimental transfer of donor EBV-specific cytotoxic T cells may be beneficial but carries the risks of eliciting alloimmune responses. An approach for cell therapy to address viral infections and associated complications that avoids the risks of alloimmunity is needed.MethodsHere the authors assess the feasibility and efficiency of correcting autologous lymphocytes from XMEN patients by MAGT1 mRNA electroporation (EP) that avoids genomic integration and can be scaled for clinical application.Results and conclusionsRestoration of NKG2D expression was demonstrated in XMEN patient lymphocytes after MAGT1 mRNA electroporation that reach healthy donor levels in CD8+ T and NK cells at 1-2 days after EP. NKG2D expression persisted at ~50% for 2 weeks after EP. Functionally, mRNA-correction of XMEN NK cells rescued cytotoxic activity also to healthy donor NK cell level. The restored NKG2D receptor expression and function were unaffected by cryopreservation, which will make feasible repeat infusions of MAGT1 mRNA-corrected autologous XMEN CD8+ T and NK cells for potential short term therapy for XMEN patients without the risks of alloimmunization.  相似文献   

12.
《Cytotherapy》2021,23(9):799-809
Background aimsTracking administered natural killer (NK) cells in vivo is critical for developing an effective NK cell-based immunotherapy against human hepatocellular carcinoma (HCC). Here the authors established a new molecular imaging using ex vivo-activated NK cells and investigated real-time biodistribution of administered NK cells during HCC progression.MethodsEx vivo-expanded NK cells from healthy donors were labeled with a near-infrared lipophilic cytoplasmic dye, and their proliferation, surface receptor expression and cytotoxicity activity were evaluated. Human HCC HepG2 cells were implanted into the livers of NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The authors administered 1,1’-dioctadecyltetramethyl indotricarbocyanine iodide (DiR)-labeled NK cells intravenously to non-tumor-bearing and intrahepatic HCC tumor-bearing NSG mice. Fluorescent imaging was performed using a fluorescence-labeled organism bioimaging instrument. Single cell suspensions from the resected organs were analyzed using flow cytometry.ResultsThe fluorescent DiR dye was nontoxic and did not affect the proliferation or surface receptor expression levels of the NK cells, even at high doses. The administered DiR-labeled NK cells immediately migrated to the lungs of the non-tumor-bearing NSG mice, with increased NK cell signals evident in the liver and spleen after 4 h. NK cells migrated to the intrahepatic tumor-bearing livers of both early- and late-stage HCC mice within 1 h of injection. In early-stage intrahepatic tumor-bearing mice, the fluorescence signal increased in the liver until 48 h post-injection and decreased 7 days after NK injection. In late-stage HCC, the NK cell fluorescence signal was the highest in the liver for 7 days after NK injection and persisted for 14 days. The purity of long-term persistent CD45+CD56+CD3 NK cells was highest in early- and late-stage HepG2-bearing liver compared with normal liver 2 weeks after NK injection, whereas highest purity was still observed in the lungs of non-tumor-bearing mice. In addition, Ki-67 expression was detected in migrated human NK cells in the liver and lung up to 72 h after administration. With HepG2 tumor progression, NK cells reduced the expression of NKp30 and NKG2D.ConclusionsAdministered NK cells were successfully tracked in vivo by labeling the NK cells with near-infrared DiR dye. Highly expanded, activated NK cells migrated rapidly to the tumor-bearing liver, where they persisted for 14 days after administration, with high purity of CD45+CD56+CD3 NK cells. Liver biodistribution and persistence of administered NK cells showed significantly different accumulation patterns during HCC progression.  相似文献   

13.
The NKG2x/CD94 family of C-type lectin-like immunoreceptors (x = A, B, C, E, and H) mediates surveillance of MHC class Ia cell surface expression, often dysregulated during infection or tumorigenesis, by recognizing the MHC class Ib protein HLA-E that specifically presents peptides derived from class Ia leader sequences. In this study, we determine the affinities and interaction thermodynamics between three NKG2x/CD94 receptors (NKG2A, NKG2C, and NKG2E) and complexes of HLA-E with four representative peptides. Inhibitory NKG2A/CD94 and activating NKG2E/CD94 receptors bind HLA-E with indistinguishable affinities, but with significantly higher affinities than the activating NKG2C/CD94 receptor. Despite minor sequence differences, the peptide presented by HLA-E significantly influenced the affinities; HLA-E allelic differences had no effect. These results reveal important constraints on the integration of opposing activating and inhibitory signals driving NK cell effector functions.  相似文献   

14.
Human NK cells contribute a significant role to host defense as well as xenogeneic cytotoxicity. Previous studies using human 721.221 cell line have shown that peptides derived from the leader sequence of the HLA-G binds and up-regulates the surface expression of HLA-E molecules, which was considered to consequently provide negative signals to human NK cells. However, the direct role of HLA-G in inhibiting human NK cells remains controversial. In this study, we showed that the expression of HLA-G or HLA-E in porcine endothelial cells directly protected sensitive porcine cells from human NK cell-mediated xenogeneic cytotoxicity. Ab blocking assays using F(ab')2 of the HLA class I-specific mAb PA2.6 indicated that the protection was directly mediated by the expression of HLA-G and HLA-E on the porcine cells. The HLA-E-mediated protection was blocked by anti-human CD94 Ab. In addition, the engagement of HLA-E lead to the phosphorylation of the CD94/NKG2 complex and the recruitment of SH2 domain-containing protein phosphatase 1 (SHP-1) to the complex. Therefore, HLA-E protected porcine cells from xenoreactive human NK cells through a CD94/NKG2-dependent pathway. In contrast, HLA-G inhibited human NK cells in the absence of CD94/NKG2 phosphorylation or SHP-1 recruitment, and the inhibition was not blocked by anti-CD94 Ab. Therefore, HLA-G protected porcine cells from human NK cells through a CD94/NKG2-independent pathway. These results demonstrated that both HLA-E and HLA-G could directly inhibit human NK cells in the absence of other endogenous HLA class I molecules. These results also have practical implications in preventing xenograft rejection mediated by human NK cells.  相似文献   

15.
《Cytotherapy》2020,22(7):354-368
Background aimsNatural killer (NK) cells are promising cells for immunotherapy of cancer, and there are ongoing efforts to improve their ex vivo expansion to clinically relevant numbers. This study focused on the development of a C1-, C2-, Bw4 killer cell immunoglobulin-like receptor (KIR) ligand and NKG2A ligand-containing feeder cell line for autonomous expansion of functional NK cells.MethodsPC3PSCA-derived feeder cells expressing IL-2, 4-1BBL and membrane-bound IL-15-mutDAP12 (mIL-15d) fusion protein in combinations or alone were generated and used for expansion. Expanded NK cells were analyzed with respect to subpopulations, expression of NK cell receptors and immune checkpoint molecules as well as their cytotoxicity against K562 cells, cetuximab-marked tumor cells and autologous B cells.ResultsOnly combinatorial expression of IL-2 plus 4-1BBL or IL-2, 4-1BBL plus mIL-15d in feeder cells efficiently expanded NK cells and supported selective outgrowth of NK cells from peripheral blood mononuclear cell samples. Best expansion of NK cells was achieved using PC3PSCA-IL-2-4-1BBL-mIL-15d feeder cells. Such expanded NK cells exhibited upregulation of natural cytotoxicity receptors, DNAM-1 and NKG2C and induced expression of high affinity IL-2 receptor, which were paralleled by attenuated KIR and increased expression of NKG2A and ILT2. In addition, elevated TIM-3 levels were noted and PD-1 and T cell immunoreceptor with Ig and ITIM domain (TIGIT) levels remained low. Expanded NK cells were highly cytolytic when encountering K562 cells and cetuximab-marked target cells but remained unresponsive to autologous B cells and target cells with protective levels of human leukocyte antigen.ConclusionsCollectively, the results demonstrate the feasibility of PC3PSCA-IL-2-4-1BBL-mIL-15d feeder cells for robust expansion of NK cells, which remain tolerant to self and could be used in the future for adoptive cell therapy of cancer.  相似文献   

16.
Human CD94/NKG2A is an inhibitory receptor that recognizes HLA-E and is expressed by NK cells and a subset of T cells. We have analyzed the cellular trafficking of the CD94/NKG2A receptor using the NKL cell line and peripheral blood NK cells. Flow cytometric, confocal microscopic, and biochemical analyses show that CD94/NKG2A continuously recycles in an active process that requires the cytoskeleton between the cell surface and intracellular compartments that are distinguishable from recycling compartments used by well-characterized receptors, such as transferrin receptor (CD71). CD94/NKG2A, an inhibitory receptor, traffics differently from the closely related CD94/NKG2C molecule, an activating receptor. Using transfection/expression analyses of wild-type and mutant CD94/NKG2A molecules in the HLA-E negative rat basophilic cell line RBL-2H3, we demonstrate that CD94/NKG2A internalization is independent of ligand cross-linking or the presence of functional immunoreceptor tyrosine-based inhibition motifs. Thus, the mechanisms that control cell surface homeostasis of CD94/NKG2A are independent of functional signaling.  相似文献   

17.
The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells.  相似文献   

18.
NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28 T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases.Key words: NKG2D, NK cell, T cell, monoclonal antibody, human IgG1, humanization, phage display, autoimmune disease  相似文献   

19.
We have previously reported a synergistic effect between hydrocortisone (HC) and IL-15 on promoting natural killer (NK) cell expansion and function. In the present study, we extend our findings to methylprednisolone (MeP) and dexamethasone (Dex), thus ascribing to glucocorticoids (GCs) a general feature as positive regulators of IL-15-mediated effects on NK cells. We demonstrate that each GC when combined with IL-15 in cultures of peripheral blood (PB)-derived CD56+ cells induces increased expansion of CD56+CD3 cells displaying high cytolytic activity, IFN-γ production potential and activating receptor expression, including NKp30, NKp44, NKp46, 2B4, NKG2D and DNAM-1. Furthermore, GCs protected NK cells from IL-15-induced cell death. The combination of IL-15 with GCs favored the expansion of a relatively more immature CD16low/neg NK cell population, with high expression of NKG2A and CD94, and significantly lower expression of KIR (CD158a and CD158b) and CD57, compared to IL-15 alone. IL-15-expanded NK cells, in the presence or absence of GCs, did not express CD62L, CXCR1 or CCR7. However, the presence of GCs significantly increased the density of CXCR3 and induced strong CXCR4 expression on the surface of NK cells. Our data indicate that IL-15/GC-expanded NK cells, apart from their increased proliferation rate, retain their functional integrity and exhibit a migratory potential rendering them useful for adoptive transfer in NK cell-based cancer immunotherapy.  相似文献   

20.
Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2Chi CD57hi NK cells gated on CD3neg CD56dim cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2Chi CD57hi NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2Chi CD57hi NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2Chi CD57hi NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号