首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six endoglucanases (Endo I; II; III; IV; V; VI), three exoglucanases (Exo I; II; III) and a beta-glucosidase (beta-gluc I) were isolated from a commercial cellulase preparation derived from Trichoderma viride, using gel filtration on Bio-Gel, anion exchange on DEAE-Bio-Gel A, cation exchange on SE-Sephadex and affinity chromatography on crystalline cellulose. Molecular masses were determined by polyacrylamide gel electrophoresis. One group of endoglucanases (Endo I, Endo II and Endo IV) with Mr of 50 000, 45 000 and 23 500 were more random in their attack on carboxymethylcellulose than another group (Endo III, Endo V and Endo VI) showing Mr of 58 000, 57 000 and 53 000 respectively. Endo III was identified as a new type of endoglucanase with relatively high activity on crystalline cellulose and moderate activity on carboxymethylcellulose. Exo II and Exo III with Mr of 60 500 and 62 000 respectively showed distinct adsorption affinities on a column of crystalline cellulose and could be eluted by a pH gradient to alkaline regions. These enzymes were cellobiohydrolases as judged by high-pressure liquid chromatography of the products obtained from incubation with H3PO4-swollen cellulose. It was concluded that these exoglucanases are primarily active on newly generated chain ends. Exo I was essentially another type of exoglucanase which in the first instance was able to split off a cellobiose molecule from a chain end and then hydrolyse this molecule in a second step to two glucose units beta-Gluc I was a new type of aryl-beta-D-glucosidase which had no activity on cellobiose. The enzyme had a Mr of 76 000 and was moderately active on CM-cellulose, crystalline cellulose and xylan and highly active on p-nitrophenyl-beta-D-glucose and p-nitrophenyl-beta-D-xylose.  相似文献   

2.
Adsorption on crystalline cellulose of six endoglucanases (Endo I, II, III, IV, V and VI; 1, 4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) and two exoglucanases (Exo II and III; 1,4-beta-D-glucan cellobiohydrolase, EC 3.2.1.92), purified from a commercial cellulase preparation of Trichoderma viride origin, was studied. Endo I, III, and V adsorbed strongly on Avicel cellulose, while adsorption of Endo II, IV, and VI was much lower. Also, the two exoglucanases could be divided into one enzyme (Exo III) that had a high adsorption affinity and another enzyme (Exo II) that adsorbed only moderately. Adsorption data fitted the Langmuir-type adsorption isotherm. However, adsorption was only partially reversible with respect to dilution. No relation could be found between adsorption affinity and degree of randomness in cellulose hydrolysis, measured as the diversity of released hydrolytic products. Kinetic measurements indicated that only part of the adsorbed enzyme molecules are hydrolytically active.  相似文献   

3.
A single form of exo-type cellulase (Exo I; Mw, 65,000), purified from a Trichoderma viride protease-depressed mutant, HK-75, digested Avicel to cellobiose exowise, and hydrolyzed cellotriose, cellotetraose, and cellopentaose in the strict manner of splitting off by cellobiose units. Exo I, however, hydrolyzed cellohexaose by both cellobiose and cellotriose units.

Exo I was proteolyzed by papain into two fragments; GPExo (Mw, 9,000) and Exo I′ (Mw, 56,000). The GPExo intensively adsorbed onto Avicel but did not hydrolyze it. Exo I′ had nearly identical activity to that of intact Exo I toward cellooligosaccharides but was almost inert to Avicel in digestion and adsorption. Sequence analysis of N-terminal and C-terminal amino acids showed that GPExo was between Gly435 and Leu496 and Exo I′ between Glu1 and Gly434 in Exo I. Exo I therefore consists of two domains, one for adsorption to Avicel, as demonstrated by the Avicel-affinity site, GPExo and the other for the cleavage of glycosidic linkages as demonstrated in Exo 1′.  相似文献   

4.
Six endoglucanases (Endo I, II, III, IV, V, and VI), three exoglucanases (Exo I, II, and III), and a beta-glucosidase (beta-gluc I) isolated from a commercial cellulase preparation of Trichoderma viride origin were examined as to their activities on xylan ex oat spelts. Endo I, II, and III as well as Exo II and III showed no activity toward xylan and were classified as specific glucanases. Less specificity was found for the endoglucanases Endo IV, V, and VI, Exo I, and beta-gluc I, whose enzymes were able to hydrolyze xylan. With respect to product formation these xylanolytic cellulases fit the classification of xylanases generally accepted in the literature. Kinetic experiment with xylan, CM-cellulose, and p-nitrophenyl-beta-D-glucoside revealed that Endo IV, V, an VI and Exo I prefer to hydrolyze beta-1, 4-D-glucosidic linkages. beta-Gluc I showed no clear substrate preference.  相似文献   

5.
Five major endo-(1→4)-β- -glucanases (I–V) have been isolated from a cellulase preparation of P. pinophilum. The pI values for I–V were 7.4, 4.8, 4.1, 3.7, and 4.0, respectively, and the respective molecular weights were 25,000, 39,000, 62,500, 54,000, and 44,500, when determined by SDS-gel electrophoresis. Endoglucanase V was optimally active at 65–70° and I–IV were most active at 50–60°. The pH optima of I and III–V were in the range 4.0–5.0. Antiserum prepared to I reacted only with I; II antiserum reacted only with II. Endoglucanases I and V were more random in their attack on CM-cellulose and H3PO4-swollen cotton cellulose, and showed no activity against cello-oligosaccharides containing less than five -glucose residues, whereas III and IV were active against all the cello-oligosaccharides tested and acted in a less random manner, and II was intermediate in its catalytic action. III was adsorbed completely on both Avicel PH101 and H3PO4-swollen cellulose, whereas IV was not adsorbed. The endoglucanases I–V have distinct roles in the digestion of cellulose.  相似文献   

6.
Five endoglucanases (1,4-beta-D-glucan-glucanohydrolase, EC 3.2.1.4) were isolated from Fusarium lini. Endo I and II were purified by preparative gel electrophoresis and Endo III, IV, and V were purified in a single-step procedure involving preparative flat-bed isoelectric focusing. All the endoglucanases were homogenous on disk gel electrophoresis and analytical isoelectric focusing in polyacrylamide gel. The pi values were between 6 and 6.6 for Endo III, IV, and V; for Endo I, the pi value was 8. The molecular weights of the enzymes were between 4 x 10(4) and 6.5 x 10(4). The K(m) values for endoglucanases using carboxymethyl cellulose (CM-cellulose) as the substrate were 2-12 mg/mL. The specificity of the enzymes was restricted to beta-1, 4-linkages. All the enzymes showed activity towards D-xylan. The endoglucanases had high viscosity reducing activity with CM-cellulose. Striking synergism was observed for the hydrolysis of CM-cellulose by endoglucanases. Endo II, IV, and V attacked cellopentaose and cellotetraose more readily than cellotriose. Endo II and V hydrolyzed cellotriose, cellotetraose, and cellopentaose, yielding a mixture of cellobiose with a trace amount of glucose; endo IV produced only cellobiose.  相似文献   

7.
Summary Crystalline cellulose Avicel has been hydrolyzed byTrichoderma viride cellulase (Meicelase CEPB) under vaned agitation conditions and the effect of agitation on the adsorption of cellulase on cellulose has been studied. Agitation was found to enhance the hydrolysis pf crystalline cellulose; possibly the agitation enhances the adsorption of exoglucanase to shift the adsorption balance of exoglucanase and endoglucanase to a direction favorable for their synergistic action on the surface of cellulose.  相似文献   

8.
Three immunologically and enzymatically distinct endoglucanases of Cellulomonas sp. ATCC 21399 were purified previously. Endoglucanase A and endoglucanase B acted synergistically on microcrystalline cellulose (Avicel), whereas no synergistic action was observed between endoglucanase B or endoglucanase C. Only endoglucanase A was capable of hydrolyzing Avicel when acting alone and this enzyme resulted in "short fiber formation" when acting on Avicel. The end product of hydrolysis of acid swollen Avicel produced by the three endoglucanases was in all cases dominated by cellobiose and showed lower content of glucose and cellotriose. Higher cellodextrins appeared as transient end products. The results indicate that the function of endoglucanase A in the cellulase system of Cellulomonas might be very similar to the function of the cellobiohydrolases of Trichoderma reesei.  相似文献   

9.
Two endoglucanases (endoglucanase B and endoglucanase C) without affinity for cellulose were purified from the culture broth of Cellulomonas sp. ATCC 21399 using gelfiltration and ion exchange chromatography. Fused rocket immunoelectrophoresis was used to select the fractions with the highest content of endoglucanase and lowest content of contaminating proteins. The endoglucanases were purified to immunological homogeneity. In addition both endoglucanases were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (molecular weights of endoglucanase B and endoglucanase C were 67000 and 25000, respectively). Endoglucanase B was homogeneous when studied by isoelectric focusing showing one protein band at pl 4.3. Both endoglucanases lacked activity against microcrystalline cellulose (Avicel) and showed similar endo action on carboxymethylcellulose (CMC). Endoglucanase B had a high specific activity against CMC, H(3)PO(4)-swollen Avicel and xylan, but showed no activity against galactomannan. In contrast, endoglucanase C showed activity against both CMC, xylan, and galactomannan all being polysaccharide substrates linked with beta-1-4-D-glucoside bonds. The specific activity of endoglucanase C against H(3)PO(4)-swollen Avicel was low.  相似文献   

10.
A single form of exo-type cellulase (Exo I; MW, 65,000), purified from a Trichoderma viride protease-depressed mutant, HK-75, digested Avicel to cellobiose exowise, and hydrolyzed cellotriose, cellotetraose, and cellopentaose in the strict manner of splitting off by cellobiose units. Exo I, however, hydrolyzed cellohexaose by both cellobiose and cellotriose units. Exo I was proteolyzed by papain into two fragments; GPExo (MW, 9,000) and Exo I' (MW, 56,000). The GPExo intensively adsorbed onto Avicel but did not hydrolyze it. Exo I' had nearly identical activity to that of intact Exo I toward cellooligosaccharides but was almost inert to Avicel in digestion and adsorption. Sequence analysis of N-terminal and C-terminal amino acids showed that GPExo was between Gly435 and Leu496 and Exo I' between Glu1 and Gly434 in Exo I. Exo I therefore consists of two domains, one for adsorption to Avicel, as demonstrated by the Avicel-affinity site, GPExo and the other for the cleavage of glycosidic linkages as demonstrated in Exo I'.  相似文献   

11.
The possible role of hydrogen peroxide in brown-rot decay was investigated by studying the effects of pretreatment of spruce wood and microcrystalline Avicel cellulose with H2O2 and Fe2+ (Fenton's reagent) on the subsequent enzymatic hydrolysis of the substrates. A crude endoglucanase preparation from the brown-rot fungus Poria placenta, a purified endoglucanase from Trichoderma reesei and a commercial Trichoderma cellulase were used as enzymes. Avicel cellulose and spruce dust were depolymerized in the H2O2/Fe2+ treatment. Mainly hemicelluloses were lost in the treatment of spruce dust. The effect of the pretreatment on subsequent enzymatic hydrolysis was found to depend on the nature of the substrate and the enzyme preparation used. Pretreatment with H2O2/Fe2+ clearly increased the amount of enzymatic hydrolysis of spruce dust with both the endoglucanases and the commercial cellulase. In all cases the amount of hydrolysis was increased about threefold. The hydrolysis of Avicel with the endoglucanases was also enhanced, whereas the hydrolysis with the commercial cellulase was decreased. Received: 23 December 1996 / Received revision: 17 April 1997 / Accepted: 19 April 1997  相似文献   

12.
1. Four principal endoglucanase components of Trichoderma koningii cellulase were separated and purified by gel filtration on Sephadex G-75, ion-exchange chromatography on DEAE- and sulphoethyl-Sephadex and isoelectric focusing. 2. All four endoglucanases hydrolysed CM-cellulose, H3PO4-swollen cellulose, cellotetraose and cellopentaose, but differed in the rate and mode of attack. 3. Attack on cotton fibre by the endoglucanases was minimal, but resulted in changes that were manifested by an increased capacity for the uptake of alkali, and a decrease in tensile strength. 4. All four endoglucanases acted synergistically with the exoglucanase [cellobiohydrolase; Wood & McCrae (1972) Biochem. J. 128, 1183-1192] of T. koningii during the early stages of the breakdown of cotton fibre, but only two could produce extensive solubilization of cotton cellulose when acting in admixture with the exoglucanase component. 5. The mode of action of the enzymes is discussed in relation to these synergistic effects. It is suggested that the results are compatible with the interpretation that the 'crystalline' areas of cotton cellulose are hydrolysed only by those endoglucanases capable of forming of forming an enzyme-enzyme complex with the cellobiohydrolase on the surface of the cellulose chains.  相似文献   

13.
《Anaerobe》2001,7(3):171-179
The cellulosome of Clostridium thermocellum was dissociated under mild conditions, and mg quantities of pure cellobiohydrolose (CBH)2(S8) and endoglucanase (S11) were isolated in active form. The CBH (79 kDa) and endoglucanase (61 kDa) were optimally active between pH 4.5–6.0 at temperatures of 60 and 70°C, respectively. Between pH 6.0–8.4, the CBH was stable at 60°C for 5 h, whereas the endoglucanase was stable at 70°C for 48 h. Both enzymes were active on natural and derivatised Glcn, H3PO4-swollen cellulose, Avicel, laminarin, lichenan and barley glucan, while only endoglucanase was active on carboxymethyl (CM)-cellulose and CM-pachyman. Cellobiose inhibited the CBH competitively with a Kiof 0.28 mM. CBH cleaved preferentially either the second (between putative sub-sites −2 and −1 or +1 and +2) or the fourth glycosidic bond (between putative sub-sites −1 and +1) of MeUmbGlcnfrom the non-reducing end, while the endoglucanase required a MeUmbGlcnwith at least three glycosidic bonds and was specific for internal linkages (between putative sub-sites −1 and +1).  相似文献   

14.
Most cellulosic substances contain appreciable amounts of cellulose and hemicellulose, which on enzymatic hydrolysis mainly yield a mixture of glucose, cellobiose, and xylose. In this paper, studies on the mechanisms of hydrolysis of bagasse (a complex native cellulosic waste left after extraction of juice from cane sugar) by the cellulase enzyme components are described in light of their adsorption characteristics. Simultaneous adsorption of exo- and endoglucanases on hydrolyzable cellulosics is the causative factor of the hydrolysis that follows immediately after. It supports the postulate of synergistic enzyme action proposed by Eriksson. Xylanase pretreatment enhanced the hydrolysis of bagasse owing to the creation of more accessible cellulosic regions that are readily acted upon by exo- and endoglucanases. The synergistic action of the purified exoglucanase, endoglucanase, and xylanse has been found to be most effective for hydrolysis of bagasse but not for pure cellulose. Significant quantities of glucose are produced in beta-glucosidase-free cellulase action on bagasse. Individual and combined action of the purified cellulase components on hydrolysis of native and delignified bagasse are discussed in respect to the release of sugars in the hydrolysate.  相似文献   

15.
The C1 component from Fusarium solani cellulase was purified extensively by molecular-sieve chromatography on Ultrogel AcA-54 and ion-exchange chromatography on DEAE-Sephadex. The purified component showed little capacity for hydrolysing highly ordered substrates (e.g., cotton fibre), but poorly ordered substrates (e.g., H3PO4-swollen cellulose), and the soluble cello-oligosaccharides cellotetraose and cellohexaose, were readily hydrolysed; cellobiose was the principal product in each case. Attack on O-(carboxymethyl)cellulose, a substrate widely used for measuring the activity of the randomly acting enzymes (Cx enzymes) of the cellulase complex, was minimal, and ceased after the removal of a few unsubstituted residues from the end of the chain. These observations, and the fact that the rate of change of degree of polymerisation of H3PO4-swollen cellulose was very slow compared with that effected by the randomly acting endoglucanases (Cx, CM-cellulases), indicate that C1 is a cellobiohydrolase. Fractionation by a variety of methods gave no evidence for the non-identity of the cellobiohydrolase and the component that acted in synergism with the randomly acting Cx enzyme when solubilizing cotton fibre.  相似文献   

16.
Several enzymatic properties of an endoglucanase produced in Escherichia coli by a gene from Pseudomonas fluorescens subsp. cellulosa were investigated. Gel filtration revealed a single peak of Mr 36,000 with endoglucanase activity. The pH optimum of the enzyme was 7.0. Carboxymethyl cellulose and barley β-glucan (mixed β-1,3 and 1,4 linkages) were good substrates, but not laminarin (β-1,3 linkages), amylose, filter paper, microcrystalline cellulose (Avicel), or cellotriose. The mode of action was typical of an “endo”-acting enzyme. Taken together, these properties do not correspond to those of any of the endoglucanases described in P. fluorescens subsp. cellulosa. Consequently, the gene was designated egIX. The enzyme was sensitive to end-product inhibition by cellobiose but was only moderately inhibited by glucose. The enzyme was formed constitutively in E. coli throughout the growth phase. Urea had no effect on endoglucanase synthesis, but glucose acted as a catabolite repressor. The formation of the enzyme in E. coli was partially dependent on cyclic AMP.  相似文献   

17.
Low exoglucanase and endoglucanase activities of marine Aspergillus niger cellulase decreased the hydrolyzing ability of cellulase. To increase the activity of halostable cellulase obtained from a marine A. niger, a cellulase with endoglucanase and exoglucanase activity was efficiently expressed by constructing a vector with promoter glaA. Exoglucanase and endoglucanase activities increased from 0.21 and 4.51 U/ml of the original strain to 0.89 U/ml and 15.12 U/ml of the transformant, respectively. Filter paper activity (FPA) increased by 7.1 folds from 0.63 to 4.47 U/ml. The release of glucose by hydrolysis of wheat straw with cellulase from the transformant was 1.37 folds higher than that with cellulase from the original strain under high salinity condition. Cellulase with endoglucanase and exoglucanase activities could be well expressed in marine A. niger. The cellulase from the transformant not only showed higher activity, but also retained halostability. An appreciate proportion of β-glucosidase, exoglucanase, endgolucanasein cellulase was important for hydrolyzing cellulose.  相似文献   

18.
The extracellular cellulase enzyme system of Clostridium A11 was fractionated by affinity chromatography on Avicel: 80% of the initial carboxymethylcellulase (CMCase) activity was adhered. This cellulase system was a multicomponent aggregate. Several CMCase activities were detected, but the major protein P1 had no detectable activity. Adhered and unadhered cellulases showed CMCase activity with the highest specific activity in Avicel-adhered fraction. However, only afhered fractions could degrade Avicel. Thus, efficiency of the enzymatic hydrolysis of Avicel was related to the cellulase-adhesion capacity. Carboxymethylcellulase and Avicelase activities were studied with the extracellular enzyme system and cloned cellulases. Genomic libraries from Clostridium A11 were constructed with DNA from this Clostridium, and a new gene cel1 was isolated. The gene(s) product(s) from cel1 exhibited CMCase and p-nitrophenylcellobiosidase (pNPCbase) activities. This cloned cellulase adhered to cellulose. Synergism between adhered enzyme system and cloned endoglucanases was observed on Avicel degradation. Conversely, no synergism was observed on CMC hydrolysis. Addition of cloned endoglucanase to cellulase complex led to increase of the Vmax without significant K m variation. Cloned endoglucanases can be added to cellulase complexes to efficiently hydrolyze cellulose.  相似文献   

19.
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.  相似文献   

20.
Abstract Growth and production of cellulosome by three strains (YS, LQRI and NCIB 10682) of Clostridium thermocellum were compared using Avicel (microcrystalline cellulose) and cellobiose as carbon sources. All three strains grew faster on cellobiose than on Avicel and produced 0.71–0.74 IU of endoglucanase/ml compared to 0.88–1.18 IU/ml on Avicel. Also, the cellulase produced by these strains in the presence of 0.2–1% cellobiose and Avicel, when compared on the basis of equal units of endoglucanase (0.5 IU), degraded cotton almost completely. SDS-PAGE further confirmed the production of cellulosome by all three strains when grown on cellobiose and Avicel. Thus, the cellobiose, like Avicel, acts as a true inducer of cellulosome in C. thermocellum .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号