首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dietary deprivation extends lifespan in Caenorhabditis elegans   总被引:5,自引:0,他引:5  
Dietary restriction (DR) is well known as a nongenetic intervention that robustly extends lifespan in a variety of species; however, its underlying mechanisms remain unclear. We have found in Caenorhabditis elegans that dietary deprivation (DD) during adulthood, defined as removal of their food source Escherichia coli after the completion of larval development, increased lifespan and enhanced thermotolerance and resistance to oxidative stress. DD-induced longevity was independent of one C. elegans SIRTUIN, sir-2.1, which is required for the effects of DR, and was independent of the daf-2/insulin-like signaling pathway that independently regulates longevity and larval diapause in C. elegans. DD did not significantly alter lifespan of fem-1(hc17); eat-2(ad465) worms, a genetic model of DR. These findings suggest that DD and DR share some downstream effectors. In addition, DD was detrimental for longevity when imposed on reproductively active young adults, suggesting that DD may only be beneficial in the absence of competing metabolic demands, such as fertility. Adult-onset DD offers a new paradigm for investigating dietary regulation of longevity in C. elegans. This study presents the first evidence that long-term DD, instead of being detrimental, can extend lifespan of a multicellular adult organism.  相似文献   

2.
3.
Ventriculomegaly induced by the abnormal accumulation of cerebrospinal fluid (CSF) leads to hydrocephalus, which is accompanied by neuroinflammation and mitochondrial oxidative stress. The mitochondrial stress activates mitochondrial unfolded protein response (UPRmt), which is essential for mitochondrial protein homeostasis. However, the association of inflammatory response and UPRmt in the pathogenesis of hydrocephalus is still unclear. To assess their relevance in the pathogenesis of hydrocephalus, we established a kaolin-induced hydrocephalus model in 8-week-old male C57BL/6J mice and evaluated it over time. We found that kaolin-injected mice showed prominent ventricular dilation, motor behavior defects at the 3-day, followed by the activation of microglia and UPRmt in the motor cortex at the 5-day. In addition, PARP-1/NF-κB signaling and apoptotic cell death appeared at the 5-day. Taken together, our findings demonstrate that activation of microglia and UPRmt occurs after hydrocephalic ventricular expansion and behavioral abnormal-ities which could be lead to apoptotic neuronal cell death, providing a new perspective on the pathogenic mechanism of hydrocephalus.  相似文献   

4.
Exposure to sub-lethal levels of stress, or hormesis, was a means to induce longevity. By screening for mutations that enhance resistance to multiple stresses, we identified multiple alleles of alpha-1,2-mannosidase I ( mas1 ) which, in addition to promoting stress resistance, also extended longevity. Longevity enhancement is also observed when mas1 expression is reduced via RNA interference in both Drosophila melanogaster and Caenorhabditis elegans. The screen also identified Edem1 ( Edm1 ) , a gene downstream of mas1, as a modulator of lifespan. As double mutants for both mas1 and Edm1 showed no additional longevity enhancement, it appeared that both mutations function within a common pathway to extend lifespan. Molecular analysis of these mutants revealed that the expression of BiP , a putative biomarker of dietary restriction (DR), is down-regulated in response to reductions in mas1 expression. These findings suggested that mutations in mas1 may extend longevity by modulating DR.  相似文献   

5.
Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans   总被引:4,自引:0,他引:4  
Protein synthesis is a regulated cellular process that links nutrients in the environment to organismal growth and development. Here we examine the role of genes that regulate mRNA translation in determining growth, reproduction, stress resistance and lifespan. Translational control of protein synthesis by regulators such as the cap-binding complex and S6 kinase play an important role during growth. We observe that inhibition of various genes in the translation initiation complex including ifg-1, the worm homologue of eIF4G, which is a scaffold protein in the cap-binding complex; and rsks-1, the worm homologue of S6 kinase, results in lifespan extension in Caenorhabditis elegans. Inhibition of ifg-1 or rsks-1 also slows development, reduces fecundity and increases resistance to starvation. A reduction in ifg-1 expression in dauers was also observed, suggesting an inhibition of protein translation during the dauer state. Thus, mRNA translation exerts pleiotropic effects on growth, reproduction, stress resistance and lifespan in C. elegans.  相似文献   

6.
7.
8.
Studies of mutations affecting lifespan in Caenorhabditis elegans show that mitochondrial generation of reactive oxygen species (ROS) plays a major causative role in organismal aging. Here, we describe a novel mechanism for regulating mitochondrial ROS production and lifespan in C .  elegans: progressive mitochondrial protein modification by the glycolysis-derived dicarbonyl metabolite methylglyoxal (MG). We demonstrate that the activity of glyoxalase-1, an enzyme detoxifying MG, is markedly reduced with age despite unchanged levels of glyoxalase-1 mRNA. The decrease in enzymatic activity promotes accumulation of MG-derived adducts and oxidative stress markers, which cause further inhibition of glyoxalase-1 expression. Over-expression of the C .  elegans glyoxalase-1 orthologue CeGly decreases MG modifications of mitochondrial proteins and mitochondrial ROS production, and prolongs C .  elegans lifespan. In contrast, knock-down of CeGly increases MG modifications of mitochondrial proteins and mitochondrial ROS production, and decreases C .  elegans lifespan.  相似文献   

9.
10.
《Free radical research》2013,47(7):813-820
Abstract

This group has invented a novel deuterohemin containing peptide deuterohemin-AlaHisThrValGluLys (DhHP-6), which has various biological activities including protection of murine ischemia reperfusion injury, improving cell survival and preventing apoptosis. It was hypothesized that DhHP-6 is beneficial on the lifespan of Caenorhabditis elegans (C. elegans) and increases their resistance to heat and oxidative stress. C. elegans were treated with different concentrations of DhHP-6. Survival time and sensitivity to heat and paraquat were investigated. The data demonstrated that the mean survival time of C. elegans was significantly increased (p < 0.05) in the DhHP-6 treated group compared with the control group. The maximum lifespan was not affected by DhHP-6 treatment. DhHP-6 improved the survival rate of C. elegans in the acute heat stress (35°C) and rescued the C. elegans' sensitivity to paraquat in acute oxidative stress. Superoxide dismutase 3 (SOD-3) protein was up-regulated by DhHP-6 treatment. It was further demonstrated that stress resistance genes such as hsp-16.1, hsp-16.49 and sir-2.1 were regulated by DhHP-6. DAF-16 and SIR-2.1 genes are essential for the beneficial effect of DhHP-6. Therefore, the investigation into the beneficial effect of DhHP-6 on C. elegans' lifespan has the potential to develop novel drugs to prevent ageing.  相似文献   

11.
Virtually every model of mitochondrial involvement in aging shares the underlying proposition that mitochondrial dysfunction will accelerate the rate of aging. Caenorhabditis elegans is a post-mitotic organism with limited capacity for replacement and repair, and there is a great deal of evidence that interventions which decrease the induction of damage extend lifespan in this model. However, decreased availability of ubiquinone in adulthood has also been found to promote longevity and stress resistance, and evidence tentatively supports decreased mitochondrial function under these conditions. In addition, gene silencing experiments and mutations that target mitochondrial electron transport have also been found to increase lifespan and stress resistance in C. elegans, as has treatment with the mitochondrial inhibitor antimycin A. The involvement of damage by reactive oxygen species has been suggested, and yet many of these manipulations would be expected to increase the production of reactive oxygen species. The extension of lifespan by these interventions seems paradoxical and the mechanism, when it is elucidated, promises to have far-reaching significance.  相似文献   

12.
The unfolded protein response (UPR) counteracts stress caused by unprocessed ER client proteins. A genome-wide survey showed impaired induction of many UPR target genes in xbp-1 mutant Caenorhabditis elegans that are unable to signal in the highly conserved IRE1-dependent UPR pathway. However a family of genes, abu (activated in blocked UPR), was induced to higher levels in ER-stressed xbp-1 mutant animals than in ER-stressed wild-type animals. RNA-mediated interference (RNAi) inactivation of a representative abu family member, abu-1 (AC3.3), activated the ER stress marker hsp-4::gfp in otherwise normal animals and killed 50% of ER-stressed ire-1 and xbp-1 mutant animals. Abu-1(RNAi) also enhanced the effect of inactivation of sel-1, an ER-associated protein degradation gene. The nine abu genes encode highly related type I transmembrane proteins whose lumenal domains have sequence similarity to a mammalian cell surface scavenger receptor of endothelial cells that binds chemically modified extracellular proteins and directs their lysosomal degradation. Our findings that ABU-1 is an intracellular protein located within the endomembrane system that is induced by ER stress in xbp-1 mutant animals suggest that ABU proteins may interact with abnormal ER client proteins and this function may be particularly important in animals with an impaired UPR.  相似文献   

13.
Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.  相似文献   

14.
NDG‐4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg‐4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long‐chain omega‐6 polyunsaturated fatty acid dihommogamma‐linolenic acid (DGLA). Two other proteins, NRF‐5 and NRF‐6, a homolog of a mammalian secreted lipid binding protein and a NDG‐4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG‐4 protein results in increased organismal stress resistance and lifespan. When NDG‐4 function and insulin/IGF‐1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg‐4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR‐80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR‐80 is also required for longevity of ndg‐4 mutants. Moreover, we find that nrf‐5 and nrf‐6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.  相似文献   

15.
Accumulation of unfolded proteins in the endoplasmic reticulum triggers the unfolded protein response (UPR) pathway, which increases the expression of chaperones to maintain the homeostasis. Calreticulin is a calcium-binding chaperone located in the lumen of endoplasmic reticulum (ER). Here we show that in response to a UPR inducing reagent, tunicamycin, the expression of calreticulin (crt-1) is specifically up-regulated in Caenorhabditis elegans. Tunicamycin (TM) induced expression of the crt-1 requires IRE-1 and XBP-1 but is ATF-6 and PEK-1 independent. Analysis of the crt-1 promoter reveals a putative XBP-1 binding site at the -284 to -278 bp region, which was shown to be necessary for TM-mediated induction. Genetic analysis of crt-1 mutants and mutants of UPR pathway genes show various degrees of developmental arrest upon TM treatment. Our results suggest that the TM-induced UPR pathway culminates in the up-regulation of crt-1, which protects the worm from deleterious accumulation of unfolded proteins in the ER. Knockdown of the crt-1, pdi-2, or pdi-3 increased the crt-1 expression, whereas knockdown of the hsp-3 or hsp-4 did not have any effect on crt-1 expression, indicating the existence of complex compensatory networks to cope up with ER stress.  相似文献   

16.
《Current biology : CB》2021,31(16):3663-3670.e4
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Loss of pregnancy-associated plasma protein A extends lifespan in mice   总被引:1,自引:0,他引:1  
Conover CA  Bale LK 《Aging cell》2007,6(5):727-729
Genetic deletion in mice of pregnancy-associated plasma protein A (PAPP-A), a recently identified metalloproteinase in the insulin-like growth factor system, extends by 30-40% both mean and maximum lifespan with no reduction in food intake or secondary endocrine abnormalities. Furthermore, these mice have markedly reduced incidence of spontaneous tumors. The findings implicate PAPP-A as a critical regulator of lifespan and age-related diseases, and suggest PAPP-A as a possible target to promote longevity.  相似文献   

19.
20.
Age-related mobility decline is often associated with negative physical and psychological outcomes, such as frailty, in the elderly population. In C. elegans, during the early stage of the aging process, a progressive deficit of synaptic exocytosis in the motor neurons results in a functional decline at the neuromuscular junctions, which eventually leads to degeneration of both neurons and muscles. This age-dependent functional decline can be ameliorated by pharmacological interventions, such as arecoline, a muscarinic AChR agonist known to promote synaptic exocytosis at the neuromuscular junctions. In this study, we found that a short-term treatment of arecoline during the early stage of aging, when the NMJ functional decline begins, not only slows muscle tissue aging, but also extends lifespan in C. elegans. We have also demonstrated that arecoline acts on the GAR-2/PLCβ pathway in the motor neurons to increases longevity. Together, our findings suggest that synaptic transmission in aging motor neurons may serve as a potential target for pharmacological interventions to promote both health span and lifespan, when applied at the early stage aging.Impact statementThe functional decline of motor activity is a common feature in almost all aging animals that leads to frailty, loss of independence, injury, and even death in the elderly population. Thus, understanding the molecular mechanism that drives the initial stage of this functional decline and developing strategies to increase human healthspan and even lifespan by targeting this process would be of great interests to the field. In this study, we found that by precisely targeting the motor neurons to potentiate its synaptic releases either genetically or pharmacologically, we can not only delay the functional aging at NMJs but also slow the rate of aging at the organismal level. Most importantly, we have demonstrated that a critical window of time, that is the early stage of NMJs functional decline, is required for the beneficial effects. A short-term treatment within this time period is sufficient to extend the animals’ lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号