首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
Calciseptine is a natural peptide consisting of 60 amino acids with four disulfide bonds. The peptide is a natural L-type Ca2+-channel blocker in heart and other systems, but its actions in skeletal muscle have not been previously described. The aim of this study is to characterize the effects of calciseptine on L-type Ca2+ channels of skeletal muscle and on contraction. Whole-cell, patch-clamp experiments were performed to record Ca2+ currents (I Ca) from mouse myotubes, whereas Vaseline-gap voltage-clamp experiments were carried out to record I Ca from frog skeletal muscle fibers. We found that calciseptine acts as a channel agonist in skeletal muscle, increasing peak I Ca by 37% and 49% in these two preparations. Likewise, the peptide increased intramembrane charge movement, though it had little effect on contraction. The molecular analysis of the peptide indicated the presence of a local, electrostatic potential that resembles that of the 1,4-dihydropyridine agonist Bay K 8644. These observations suggest that calciseptine shares the properties of 1,4-dihydropyridine derivatives in modulating the permeation of divalent cations through L-type channels. Received: 18 December 2000/Revised: 16 July 2001  相似文献   

2.
L. Oliveira 《Protoplasma》1990,158(3):182-190
Summary InVaucheria longicaulis var.macounii aplanospore germination and filament growth are severely inhibited by the Ca2+-channel antagonists (–)202–791, diltiazem, nifedipine and verapamil, whereas the agonists (+)202–791, Bay K-8644 and CGP-28392 stimulate those processes. Both antagonist and agonist actions suggest that voltage-controlled Ca2+ influx plays a major role in the regulation of the initial events of germination and filament growth. Increases in45Ca2+ influx are observed after pretreatment of the aplanospores with low temperature shocks of brief duration or FCCP. Both agents are known to depolarize the surface membrane.45Ca2+ influx is reduced in material treated with FC, an agent known to hyperpolarize cell membranes. The results indicate that Ca2+ influx takes place through voltage-sensitive Ca-channels.Abbreviations Bay K-8644 methyl 1,4-dihydro-2,6-dimethy1-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate - CGP CGP-28392 - CTC chlorotetracycline - dil diltiazem - DMSO dimethyl sulphoxide - DTE dithioerythritol - EGTA ethyleneglycol-bis-(-aminoethylether) N,N1-tetraacetic acid - FC fusicoccin - FCCP p-fluoromethoxy-(carbonylcyanide)phenylhydrazone - nif nifedipine - PCMB p-chloromercuribenzoate - ver verapamil  相似文献   

3.
A protein was isolated from the thermostable protein fraction of N. obtusa cells and purified by hydrophobic chromatography on phenyl-Sepharose and affinity chromatography on melittin-Sepharose. In 15% polyacrylamide gel, the protein has an electrophoretic mobility corresponding to Mr 17,000 in the presence of 1 mM Ca2+ and Mr no higher than 19,000 in the presence of 1 mM EGTA. Introduction of the protein isolated to a perfused N. obtusa cell affects the electric parameters of the plasmalemma Ca2+ channels. This influence shows up as a change in ICa2+, as well as an activation of the electrogenous processes in the plasmalemma. The protein produces restoration of ICa2+ in the Ca2+ channels blocked by chlorpromazine. Possible mechanisms of involvement of this protein in regulation of the functional state of potential-dependent Ca2+ channels of N. obtusa plasmalemma are assumed.  相似文献   

4.
The voltage-clamp technique was used to study Ca2+ and Cl transient currents in the plasmalemma of tonoplast-free and intact Chara corallina cells. In tonoplast-free cells [perfused medium with ethylene glycol bis(2-aminoethyl ether)tetraacetic acid] long-term inward and outward currents through Ca channels consisted of two components: with and without time-dependent inactivation. The voltage dependence of the Ca channel activation ratio was found to be sigmoid-shaped, with about –140-mV activation threshold, reaching a plateau at V>50 mV. As the voltage increased, the characteristic activation time decreased from approximately 103 ms in the threshold region to approximately 10 ms in the positive region. The positive pulse-activated channels can then be completely deactivated, which is recorded by the Ca2+ tail currents, at below-threshold negative voltages with millisecond-range time constants. This tail current is used for fast and brief Ca2+ injection into tonoplast-free and intact cells, to activate the chloride channels by Ca2+ . When cells are perfused with EDTA-containing medium in the presence of excess Mg2+, this method of injection allows the free submembrane Ca2+ concentration, [Ca2+]c, to be raised rapidly to several tens of micromoles per liter. Then a chloride component is recorded in the inward tail current, with the amplitude proportional to . When Ca2+ is thus injected into an intact cell, it induces an inward current in the voltage-clamped plasmalemma, having activation–inactivation kinetics qualitatively resembling that in EDTA-perfused cells, but a considerably higher amplitude and duration (approximately 10 A m–2 and inact~0.5 s at –200 mV). Analysis of our data and theoretical considerations indicate that the [Ca2+]c rise during cell excitation is caused mainly by Ca2+ entry through plasmalemma Ca channels rather than by Ca2+ release from intracellular stores.  相似文献   

5.
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.  相似文献   

6.
Moran N  Fox D  Satter RL 《Plant physiology》1990,94(2):424-431
A depolarization-activated K+ channel capable of carrying the large K+ currents that flow from shrinking cells during movements of Samanea saman leaflets has been described in the plasmalemma of Samanea motor cell protoplasts (N Moran et al [1988] Plant Physiol 88:643-648). We now characterize this channel in greater detail. It is selective for K+ over other monovalent ions, with the following order of relative permeability: K+ > Rb+ > Na+ Cs+ Li+. It is blocked by Cs+ and by Ba2+ in a voltage dependent manner, exhibiting a `long-pore' behavior, similarly to various types of K+ channels in animal systems. Cadmium, known for its blockage of Ca2+ channels in animal systems, and Gd3+, closely related to La3+, which also blocks Ca2+ channels in animal cells, both block K+ currents in Samanea in a voltage-independent manner, and without interfering with the kinetics of the currents. The suggested mechanism of block is either (a) by a direct interaction with the K+ channel, but external to its lumen, or, alternatively, (b) by blocking putative Ca2+ channels, and preventing the influx of Ca2+, on which the activation of the K+ channels may be dependent.  相似文献   

7.
The effects of haloperidol, an antagonist of D2 dopamine receptors, on the functioning of Ca2+, K+, and Cl? ion channels in the membrane of Chara corallina cells and on the functional properties of their cytoskeleton was studied. Haloperidol blocked Ca2+ channels of the plasmalemma. In addition to bringing about a decrease in the amplitude of the calcium current, exposure to haloperidol decelerated the activation and inactivation of calcium channels. The effect of haloperidol was reversible; after it was removed, the characteristics of calcium current were restored. Haloperidol did not affect Ca2+-activated chloride channels. Haloperidol also inhibited microfilament-dependent motion of the cytoplasm. Cytoplasmic streaming was restored after haloperidol was removed from the extracellular solution. These results suggest that the concentration of free Ca2+ ions in the cytoplasm increases in the presence of haloperidol, and that Ca2+ channels of C. corallina plasmalemma possess specific binding sites both for dopamine receptors and for their antagonists.  相似文献   

8.
Effects of D2O were studied on internodal cells of the freshwater alga Nitellopsis obtusa under plasmalemma perfusion (tonoplast-free cells) with voltage clamp, and on Ca2+ channels isolated from the alga and reconstituted in bilayer lipid membranes (BLM). External application of artificial pond water (APW) with D2O as the solvent to the perfused plasmalemma preparation led to an abrupt drop of membrane resistance (R m = 0.12 ±0.03 kΩ · cm2), thus preventing further voltage clamping. APW with 25% D2O caused a two-step reduction of R m : first, down to 2.0 ± 0.8 kΩ · cm2, and then further to 200 Ω · cm2, in 2 min. It was shown that in the first stage, Ca2+ channels are activated, and then, Ca2+ ions entering through them activate the Cl? channels. The Ca2+ channels are activated irreversibly. If 100 mm CsCl was substituted for 200 mm sucrose (introduced for isoosmoticity), no effect of D2O on R m was observed. Intracellular H2O/D2O substitution also did not change R m . In experiments on single Ca2+ channels in BLM H2O/ D2O substitution in a solution containing 100 mm KCl (trans side) produced no effect on channel activity, while in 10 mm KCl, at negative voltage, the open channel probability sharply increased. This effect was irreversible. The single channel conductance was not altered after the H2O/D2O substitution. The discussion of the possible mechanism of D2O action on Ca2+ and Cl? channels was based on an osmotic-like stress effect and the phenomenon of higher D-bond energy compared to the H-bond.  相似文献   

9.
The plant hormone cytokinin stimulates target caulonemata of Funaria to form buds that develop into the leafy gametophyte. Previous reports have shown that increases in intracellular Ca2+ occur during hormone-activated budding concomitant with an alteration in the polarity of the organelles in the bud site. In order to ascertain the involvement of voltage-dependent Ca2+ channels in this phenomenon, we have employed dihydropyridines (DHP), compounds noted for their ability to alter Ca2+ flux through potential-sensitive channels. Addition of the DHP agonists (+)202-791 and CGP 28392 (100 micromolar) induces bud initials on every target cell including the tip cell. Application of the DHP antagonist (−)202-791, in the presence of cytokinin (1 micromolar benzyladenine), inhibits budding 96%. Similarly, nifedipine blocks cytokinin-induced budding 87% and its effect on budding can be inactivated with a pulse of ultraviolet light. These results are consistent with the idea that cytokinin induces the budding response by increasing Ca2+ entry through voltage-operated channels. We suggest that cytokinin activation of Ca2+ channels is the first action of the hormone and that subsequent cytokinin-induced mechanisms are operating to maintain budding, since DHP-induced initials rarely develop into complete buds.  相似文献   

10.
Over twenty years ago it was shown that depletion of the intracellular Ca2+ store in smooth muscle triggered a Ca2+ influx mechanism. The purpose of this review it to describe recent electrophysiological data which indicate that Ca2+ influx occurs through discrete ion channels in the plasmalemma of smooth muscle cells. The effect of external Ca2+ on the amplitude and reversal potential of whole-cell and single channel currents suggests that there are at least two, and probably more, distinct store-operated channels (SOCs) which have markedly different permeabilities to Ca2+ ions. Two activation mechanisms have been identified which involve Ca2+ influx factor and protein kinase C (PKC) activation via diacylglycerol. In addition, in rabbit portal vein cells there is evidence that stimulation of α-adrenoceptors can stimulate SOC opening via PKC in a store-independent manner. There is at present little knowledge on the molecular identity of SOCs but it has been proposed that TRPC1 may be a component of the functional channel. We also summarise the data showing that SOCs may be involved in contraction and cell proliferation of smooth muscle. Finally, we highlight the similarities and differences of SOCs and receptor-operated cation channels that are present in native rabbit portal vein myocytes.  相似文献   

11.
The effects of calcium agonists BAY-K8644 and CGP-28392 on steroidogenesis was examined in chicken granulosa cells in short term incubation. BAY-K8644 (5-500 nM) and low doses of CGP-28392 (1-10 microM) failed to appreciably affect basal and LH-stimulated progesterone production whether tested in calcium free, low (0.05 mM) or high (3 mM) calcium containing medium. However, higher concentrations of CGP-28392 (50-250 microM) inhibited significantly (P less than 0.01) both basal and LH-stimulated steroidogenesis in a dose-related manner independently of extracellular calcium availability. The suppressive effect of CGP-28392 was manifest with submaximally and maximally stimulating LH doses. In additional experiments with non-hormonal agonists such as forskolin, dibutyryl cyclic AMP and kaurenol, BAY-K8644 and low CGP-28392 concentrations were again without effect on steroidogenesis. By comparison, higher CGP-28392 doses suppressed the stimulatory effects of all three agonists dose-dependently. These results demonstrate that, the calcium channel agonists are incapable of inducing a steroidogenic response in chicken granulosa cells. Since BAY-K8644 and CGP-28392 (low dose, 1-10 microM) failed to influence steroidogenesis in the dose range that induced maximal physiologic responses and calcium influx in a variety of cells, it is concluded that chicken granulosa cells lack the type(s) of channels specific for them. Hence the usefulness of BAY-K8644 and CGP-28392 as Ca2+ probes may be tissue-specific. The inhibitory effects of CGP-28392 appear to be non-specific.  相似文献   

12.
This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 (TRPM8) ion channels, to increase intracellular Ca2+ concentration, [Ca2+]i, in human glioblastoma cells (DBTRG cells), which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels). Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 μM) abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 μM) added to the bath. The estimated on-cell conductance of these channels was 253 pS. Kinetic analysis showed that added menthol increased channel open probability and mean open frequency after 5 min. In a similar time course menthol increased [Ca2+]i, and this increase was abolished either by added paxilline, tetraethylammonium ion or by Ca2+-free external solution. Finally, menthol stimulated the rate of DBTRG cell migration into scratch wounds made in confluent cells, and this also was inhibited by paxilline or by tetraethylammonium ion. We conclude that menthol, a TRPM8 agonist, increases DBTRG cell [Ca2+]i that in turn activates membrane BK ion channels. Inhibition of BK channels by paxilline reverses menthol-stimulated increase of [Ca2+]i and of cell migration. Thus, BK channels function to maintain elevations in [Ca2+]i needed to sustain increases in DBTRG cell migration.  相似文献   

13.
In rat tail artery (RTA), spinal cord injury (SCI) increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist) mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR) limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control) and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker) in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.  相似文献   

14.
The large conductance Ca2+-activated K+ (BK) channels are widely distributed in the brain, and act as intracellular calcium sensors in neurons. They play an important feedback role in controlling Ca2+ flux and Ca2+-dependent processes, including neurotransmitter release and cellular excitability. In this study, the effects of the neuropeptide galanin on BK channels were examined by determining the whole-cell currents and single-channel activities in human embryonic kidney (HEK293) cells co-expressing GalR2 and the BK alpha subunit. Galanin enhanced the currents of BK channels, in a concentration-dependent and PTX-independent manner, with an ED50 value of 71.8 ± 16.9 nM. This activation was mediated by GalR2, since its agonist AR-M1896 mimicked the effect of galanin, and since galanin did not facilitate BK currents in cells co-expressing cDNAs of BK and GalR1 or GalR3. The galanin-induced BK current persisted after replacement with Ca2+-free solution, suggesting that extracellular Ca2+ is not essential. Chelating intracellular Ca2+ by either the slow Ca2+ buffer EGTA or the fast Ca2+ buffer BAPTA abolished galanin-mediated activation of BK channels, indicating the important role of intracellular Ca2+. The role of Ca2+ efflux from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) was confirmed by application of thapsigargin, an irreversible inhibitor that depletes Ca2+ from SR/ER. Moreover, the inositol-1,4,5-triphosphate receptor (IP3R) was identified as the mediator responsible for increased intracellular Ca2+ activating BK channels. Taken together, activation of GalR2 leads to elevation of intracellular Ca2+ is due to Ca2+ efflux from ER through IP3R sequentially opening BK channels.  相似文献   

15.
Studying the currents in perfused cells or fragments of their membranes with voltage-gated calcium channels and Ca2+-dependent ion channels, it is often expedient to use a buffer that binds Ca2+ slowly. For this purpose, we propose EDTA in excess Mg2+. Calculation of its kinetic characteristics shows that the characteristic time of Ca2+ binding can to be made to reach tens of milliseconds; in the cytoplasm this time does not exceed 1 ms even with a large calcium signal.  相似文献   

16.
The anticonvulsant activities of cannabinoid compounds have been shown in various models of seizure and epilepsy. At least, part of antiseizure effects of cannabinoid compounds is mediated through calcium (Ca2+) channels. The L-type Ca2+ channels have been shown to be important in various epilepsy models. However, there is no data regarding the role of L-type Ca2+ channels in protective action of cannabinoids on acute and chronic models of seizure. In this study, the effects of cannabinoid compounds and L-type Ca2+ channels blockers, either alone or in combination were investigated using acute model of pentylenetetrazole (PTZ)-induced seizure in mice and chronic model electrical kindling of amygdala in rats. Pretreatment of mice with both cannabinoid CB1 receptor agonist arachidonyl-2′-chloroethylamide (ACEA) and endocannabinoid degradating enzyme inhibitor cyclohexylcarbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597) produced a protective effect against PTZ-induced seizure. Administration of various doses of the two L-type Ca2+ channel blockers verapamil and diltiazem did not alter PTZ-induced seizure threshold. However, co-administration of verapamil and either ACEA or URB597 attenuated the protective effect of cannabinoid compounds against PTZ-induced seizure. Also, pretreatment of mice with diltiazem blocked the anticonvulsant activity of both ACEA and URB597. Moreover, (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2), the non-selective cannabinoid CB1 and CB2 receptor agonist showed anticonvulsant effect in amygdala-kindled rats. However, co-administration of WIN55,212-2 and verapamil attenuated the protective properties of WIN55,212-2. Our results showed that the anticonvulsant activity of cannabinoid compounds is mediated, at least in part, by L-type Ca2+ channels in these two models of convulsion and epilepsy.  相似文献   

17.
Tonoplast Action Potential of Characeae   总被引:2,自引:0,他引:2  
The plasmalemma action potential was found to be indispensableto the production of the tonoplast action potential. In a solutionlacking Ca2+ and containing other divalent cations such as Ba2+,Mg2+ or Mn2+, the plasmalemma excited in Nitella but did notin Chara. In Nitella, however, both the tonoplast action potentialand EC-coupling were abolished due to depletion of Ca2+ fromthe external medium. Ca2+ ions injected into the cytoplasmiclayer caused a transient change in both plasmalemma and tonoplastpotentials. These results suggest that a transient rise in Ca2+concentration during excitation of the plasmalemma may triggerthe tonoplast action potential. (Received February 14, 1986; Accepted August 29, 1986)  相似文献   

18.
The specific complexes of human α-lactalbumin (α-LA) with oleic acid (OA), HAMLET and LA-OA-17 (OA-complexes), possess cytotoxic activity against tumor cells but the mechanism of their cell penetration remains unclear. To explore the molecular mechanisms underlying interaction of the OA-complexes with the cell membrane, their interactions with small unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles and electroexcitable plasma membrane of internodal native and perfused cells of the green alga Chara corallina have been studied. The fractionation (Sephadex G-200) of mixtures of the OA-complexes with the vesicles shows that OA-binding increases the affinity of α-LA to DPPC vesicles. Calcium association decreases protein affinity to the vesicles; the effect being less pronounced for LA-OA-17. The voltage clamp technique studies show that LA-OA-17, HAMLET, and their constituents produce different modifying effects on the plasmalemmal ionic channels of the Chara corallina cells. The irreversible binding of OA-complexes to the plasmalemma is accompanied by changes in the activation-inactivation kinetics of developing integral transmembrane currents, suppression of the Ca2+ current and Ca2+-activated Cl current, and by increase in the nonspecific K+ leakage currents. The latter reflects development of nonselective permeability of the plasma membrane. The HAMLET-induced effects on the plasmalemmal currents are less pronounced and potentiated by LA-OA-17. The control experiments with OA and intact α-LA show their qualitatively different and much less pronounced effects on the transmembrane ionic currents. Thus, the modification of α-LA by OA results in an increase in the protein association with the model lipid bilayer and in drastic irreversible changes in permeability of several types of the plasmalemmal ionic channels.  相似文献   

19.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

20.
In electrically non-excitable cells, one major source of Ca2+ influx is through the store-operated (or Ca2+ release-activated Ca2+) channel by which the process of emptying the intracellular Ca2+ stores results in the activation of Ca2+ channels in the plasma membrane. Using both whole-cell patch-clamp and Ca2+ imaging technique, we describe the electrophysiology mechanism underlying formyl-peptide receptor like 1 (FPRL1) linked to intracellular Ca2+ mobilization. The FPRL1 agonists induced Ca2+ release from the endoplasmic reticulum and subsequently evoked ICRAC-like currents displaying fast inactivation in K562 erythroleukemia cells which expresses FPRL1, but had almost no effect in K562 cells treated with FPRL1 RNA-interference and HEK293 cells which showed no FPRL1 expression. The currents were impaired after either complete store depletion by the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, or after inhibition of PLC by U73122. Our results present the first evidence that FPRL1 is a potent mediator in the activation of CRAC channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号