首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca2+ uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death.  相似文献   

2.
3.
Phagocytosis in adherent P388D1 (D1) cells was monitored utilizing formalin treated Listeriamonocytogenes (Lm) previously labeled with 125iododeoxyuridine. The dependence of this phagocytic process on calcium was studied by using several agents which alter calcium metabolism. The calcium antagonist ruthenium red (RR) produced a dose and time dependent stimulation (60–70%) of Lm phagocytosis by D1 cells. Utilizing another calcium antagonist, D-600, a prolonged inhibition (4 hours) of phagocytosis (40%) was observed. The addition of the cation ionophore A23187 produced a transient stimulatory increase (38% at 2 hours) in the phagocytic response. The concomitant addition of RR and D-600 did not alter the phagocytosis of Lm by D1 cells as compared to control cells. However, this complete drug/drug antagonism was not seen with the combinations of A23187 and D-600 or RR and A23187. The addition of A23187 and D-600 resulted in a time dependent inhibition of phagocytosis which did not become maximal until 3 to 4 hours. A23187 and RR produced a time independent stimulation of phagocytosis which was significantly less than that which was observed for RR alone, but was of longer duration than the response produced by A23187 alone. The use of these calcium probes in the P388D1 macrophage model suggests a role for calcium in the phagocytic process.  相似文献   

4.
Local administration of the calcium ionophore, A-23187 increased basal fluid secretion (non-stimulated) from the cannulated main excretory duct of rabbit lacrimal gland in vivo. A-23187 also facilitated fluid secretion induced by submaximal dose of methacholine (0.1 μg/kg, intraarterially). The stimulatory effect of A-23187 was dependent on the extracellular calcium concentration. Lowering the extracellular calcium by addition of EGTA markedly depressed or abolished the responses to the ionophore while increasing the extracellular calcium with CaCl2 enhanced it. The results suggest that A-23187 causes increase in cell membrane permeability to extracellular calcium and the rise in intracellular calcium activates the secretory process(es) by an unknown mechanism to produce fluid secretion in the rabbit lacrimal gland.  相似文献   

5.
The effects of cholinergic stimulation on glucose equilibrium exchange rate have been studied in human erythrocytes. Carbamylcholine increases the V of equilibrium exchange by 20% but has no significant effect on Km. The cholinergic effect is abolished by the muscarinic antagonist atropine or by alterations in intracellular calcium concentrations induced by the calcium ionophore A23187.  相似文献   

6.
Induction of sporulation in Blastocladiella emersonii is absolutely dependent on extracellular calcium. Vegetative cells grown in media with or without calcium do not sporulate in media devoid of calcium or in CaCl2 with EGTA. Calcium channel blockers, CoCl2 and nifedipine, and ionophore A23187 inhibited the induction of sporulation. The calmodulin antagonists trifluoperazine and chlorpromazine inhibited the sporulation when present in the cultures at least 60 min after induction. So, calcium that is accumulated during growth is not sufficient or is not mobilized to initiate sporulation, and a calcium influx is likely to occur by type II calcium channel functions, essential for the response to nutritional starvation. A calmodulin-like protein has been suggested to mediate calcium events in sporulation.  相似文献   

7.
The prostaglandin calcium association constants and calcium transport rates are reported. The calcium association constants for prostaglandins B2 and E2 were similar to one another, but lower than those of the ionophores A23187 and X537A. Using a Pressman cell, the ionophores A23187 and X537A, as well as prostaglandin B2, were found to transport calcium through an organic phase, while the prostaglandin E2 calcium transport rate was not appreciable in the artifical system.  相似文献   

8.
《Insect Biochemistry》1987,17(1):179-187
The role of calcium in the modulation of juvenile hormone (JH) biosynthesis and release by the corpora allata (CA) of Diploptera punctata was examined using an in vitro radiochemical assay. JH production showed a dose dependence on extracellular calcium in the incubation medium. Rates of JH release were maximal between calcium concentrations of 3–5 mM and were almost totally inhibited in its absence. Upon return to medium containing 5 mM calcium, CA exhibited a rapid increase in JH release, although rates of release remained slightly below normal.Blockers of voltage-dependent calcium channels (verapamil, nifedipine), at physiological doses, were able to modulate JH production whereas non-specific calcium channel blockers such as lanthanum effectively inhibited JH release. The calcium ionophore A23187 caused a rapid and irreversible decline in JH release. The calcium dose-response for A23187 showed 50% inhibition of JH release at about 1 mM calcium and maximal inhibition (93%) at 6 mM calcium. Treatment with lanthanum or A23187 did not result in an accumulation within the CA of either JH or methyl farnesoate and accordingly, these compounds appeared to reduce overall JH biosynthesis rather than inhibiting release. Inhibition of JH release by A23187 was dramatically attenuated by coincubation with cobalt, although cobalt alone was found to stimulate JH release significantly. Intracellular calcium levels thus appear to be important in the regulation of JH biosynthesis and release.  相似文献   

9.
Specific radioimmunoassays were used to demonstrate the synthesis by the guinea pig trachea of 6-keto PGF, TxB2, and PGF in addition to PGE2. The rank order of both spontaneous and stimulated release was PGE2 > PGF2α > 6-keto PGF = TxB2. Ovalbumin-induced prostanoid release from sensitized tissue was antigen-specific. The release was unlikely to be a secondary consequence of tracheal contraction since incubations with calcium ionophore A23187, at a concentration which produces an equivalent magnitude of contraction of sensitized trachea, did not induce a significant PG or Tx production. In contrast, significantly higher prostanoid synthesis was induced by A23187 in unsensitized than sensitized trachea. Thus sensitization altered the profile of arachidonic acid metabolism evoked by the ionophore.  相似文献   

10.
An important regulatory step for prostaglandin synthesis is the availability of the precursor, free arachidonic acid (AA). In isolated salivary glands of the lone star tick, Amblyomma americanum (L.), the level of free AA appears to depend on higher phospholipase A2 (PLA2) activity rather than decreased rates of re-esterification by lysophosphatide acyl transferase (LAT). This conclusion is supported by experiments where inhibition of LAT with merthiolate was without effect, while the calcium ionophore A23187, a PLA2 stimulant, increased levels of free AA. The PLA2 activity in A. americanum was reduced by the substrate analog, PLA2 inhibitor, oleyloxyethyl phosphorylcholine in a dose-dependent manner, but was insensitive to the other mammalian PLA2 inhibitors mepacrine (20μM), aristolochic acid (45μM), and dexamethasone (50μM). No substrate preference was observed for the functional group of the phospholipid, with phosphatidylcholine and phosphatidylethanolamine being equal sources of AA in A23187-stimulated glands. Compared to phospholipids containing other fatty acids, only arachidonyl-phospholipid (arachidonyl-PL) was significantly hydrolyzed by PLA2 activity in A23187-stimulated glands. Dopamine was as effective as A23187 as a stimulant of PLA2 activity in isolated glands, but this effect was abolished in the presence of the calcium channel blocking agent verapamil. It is concluded that free AA levels in tick salivary glands are increased through activation of a Type IV-like PLA2 following an increase of intracellular calcium caused by the opening of voltage-dependent calcium channels due to dopamine stimulation. © 1995 Wiley-Liss, Inc.  相似文献   

11.
1. Both the radular retractor (RR) and radular sac (RS) muscles of Neptunea antiqua depend upon [Ca]0 to raise the internal calcium concentration of the contractile elements to activation level.2. The K- and ACh-induced responses of the muscles were strongly inhibited in calcium-free seawater.3. Calcium antagonist drugs were more inhibitory on ACh-induced responses than on K-responses suggesting a dichotomy of calcium channel activities modulated by these agonists.4. The calcium ionophore A23187 enhanced ACh-induced responses of both muscles but was without effect on K-induced responses.5. The responses of these Neptunea muscles to calcium antagonist drugs show some similarities but also differences to those of Buccinum muscles and are quite unlike the excitation induced by organic antagonists in similar muscles of the American whelk Busycon canaliculatum.  相似文献   

12.
The effect on arachidonate metabolism of two compounds (BW755C and benoxaprofen) which have been reported to inhibit 5′ lipoxygenase in leukocytes has been evaluated in human polymorphonuclear leukocytes (PMN) stimulated with the calcium ionophore A23187 and serum-treated zymosan (STZ). The syntheses of leukotriene B4 (LTB4) and thromboxane B2 (TXB2) from endogenous substrate were determined by specific radioimmunoassays as indicators of 5′ lipoxygenase and cyclo-oxygenase activity in the PMN respectively. Benoxaprofen inhibited the synthesis of leukotriene B4 by human PMN stimulated with the calcium ionophore A23187, but it was approximately 5 times less potent than BW755C. However, benoxaprofen (IC50 1.6 × 10−4M) was approximately 100 times less potent than BW755C (IC50 1.7 × 10−6M) at inhibiting leukotriene B4 synthesis induced by serum-treated zymosan. Both drugs inhibited thromboxane synthesis by leukocytes stimulated with A23187 or serum-treated zymosan at similar concentrations (approximately 5 × 10−6M). The data obtained using STZ as stimulus are consistent with previous studies and indicate that benoxaprofen is a relatively selective inhibitor of cylco-oxygenase. However, this selectivity was far less apparent when A23187 was used as a stimulus to release the eicosanoids which suggests that this inhibition could be via an indirect mechanism and therefore A23187 should be used with caution as a stimulus of 5′ lipoxygenase for evaluating inhibitors of eicosanoid synthesis.  相似文献   

13.
The role of ionized calcium in the early phases of activation of human peripheral blood lymphocytes was evaluated by stimulating the cells with a calcium ionophore A23187 (Lilly) or with mitogenic lections over a broad range of extracellular calcium concentrations (< 1 to > 1000 μM). A number of biochemical parameters shown previously to be altered during stimulation of these cells by mitogenic lectins were studied including: 1) amino acid transport, 2) phosphatidylinositol turnover, 3) cyclic nucleotide accumulation, and 4) calcium uptake. The ionophore (0.1–0.5 μg/ml) was shown to produce stimulatory effects in all of these systems with the changes closely simulating those produced by the lectins themselves both in regard to time course and magnitude. A23187 also produced 5–10 fold increases in DNA synthesis as measured at 48–72 hr after exposure of the cells to this agent. The responses to A23187 were shown to be almost completely dependent on the presence of ionized calcium. Since mitogenic lectins are known to stimulate calcium uptake and DNA synthesis appears to require extracellular calcium, the early responses to A23187 suggested that calcium was important both during the early and later phases of lymphocyte activation. However, short time course studies of amino acid transport, cyclic AMP accumulation, and phosphatidylinositol turnover in calcium deficient media failed to provide convincing evidence of calcium dependency in lectin stimulation since the three responses were well preserved (<25% inhibition) in “calcium free” medium containing 1–3 mM ethylene bis (ethylene oxynitrilo) tetraacetic acid (EGTA) (an estimated final Ca2+ concentration of <1 μM). Greater than 50% inhibition of the lectin response was seen only when the cells were incubated in calcium free, EGTA-containing medium for 30 min prior to stimulation with lectin. Thus despite the striking ability of A23187 complexed with calcium to mimic the action of mitogenic lectins, its effects may involve more than simple transport of calcium into the cell. A23187 may also exert a direct membrane action as suggested by its ability to produce rapid increases in cAMP and the occurrence of cytotoxicity at 5–10 fold higher concentrations (2–4 μg/ml). However, these data do not entirely exclude a mechanism of ionophore action whereby: 1) mobilization of intracellular stores of calcium and 2) diminished intracellular transport of ionized calcium at extracellular concentrations less than or equal to 1 μM combine to provide an effective stimulus for cellular activation.  相似文献   

14.
Adenosine triphosphate (ATP) is necessary in the enzymatic production of glutathione (GSH). Our aim was to improve GSH production by increasing the efficiency of ATP regeneration in a coupled system. Previous results suggested that low GSH production in the coupled system is due to the irreversible transformation of adenosine (Ado) to hypoxanthine (Hx) via inosine (Ino) pathway in Escherichia coli JM109 (pBV03). In this study, to block the transformation of Ado into Hx and enhance GSH production, a coupled ATP regeneration system was constructed with adenosine deaminase-deficient recombinant E. coli JW1615 (pBV03) and Saccharomyces cerevisiae WSH2. GSH production was improved (2.94-fold of the control), and ATP regeneration reaction was established in the coupled system. The results are applicable to ATP regeneration in other microbial processes.  相似文献   

15.
Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(β-aminoethyl ether)-N-N′-tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent protein kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.  相似文献   

16.
The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 µM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 µM, serotonin reuptake inhibitor (Prozac) 20 µM. In another set of experiment, calcium at 5 mM, calcium ionophore (A23187) 100 µM, and calcium channel blocker varapamil hydrochloride (1 mM) a calcium chelator EGTA (100 µM) were administered to the culture medium. The percentage of shoot multiplication, endogenous MEL and SER were monitored during shoot organogenesis. At 100 µM SER and MEL treatment 60% and 70% explants responded for shoot multiplication respectively. Medium supplemented with either SER or MEL along with calcium (5 mM) 75%–80% explants responded for organogenesis. SER or MEL along with calcium ionophore (A23187) at 100 µM 70% explants responded for shoot multiplication. p-CPA, prozac, verapamil and EGTA, shoot multiplication was reduced and endogenous pools of SER, MEL decreased by 40–70%. The results clearly demonstrated that indoleamines and calcium channels positively influenced shoot organogenesis in M. pudica L.  相似文献   

17.
The regulatory effect of calcium added in vitro on 25-hydroxycholecalciferol metabolism was studied in kidney mitochondria and in renal tubules from vitamin D-deficient chicks. The addition of calcium (0.05 – 0.2 mm) to mitochondrial suspensions prepared with calcium-chelating agents caused a marked and dose-related stimulation of 1-hydroxylation. A sharp decline in the activity was induced by higher concentrations of calcium (0.3 – 0.7 mm). A similar but less striking biphasic effect of calcium on 1-hydroxylation was observed in mitochondria prepared in the absence of calcium chelating agents. The effect of calcium was not a consequence of accelerated mitochondrial translocation of either exogenous NADP or Mg2+ but was related to mitochondrial calcium content. The addition of inhibitors of the calcium uptake, i.e., LaCl3 or ruthenium red, or a calcium ionophore (A 23187) significantly inhibited the calcium-induced stimulation of the 1-hydroxylation reaction. Similar calcium effects were also observed in renal tubules isolated from intact, but not from parathyroidectomized, vitamin D-deficient chicks. These data strongly suggest that mitochondrial calcium plays an important role in the regulation of 1-hydroxylase activity in kidney.  相似文献   

18.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

19.
Recent studies have suggested a role for Ca2+-dependent proteolysis in the regulation of microfilament disassembly by high molecular weight actin-binding protein. A Ca2+-activated protease similar to myofibrillar Ca2+-activated protease has been described in platelets. To explore the role of Ca2+-activated proteolysis of actin-binding protein in platelet function, we have examined the effects of platelet aggregating agents on platelet Ca2+-activated protease-like activity. The hydrolysis of actin-binding protein by Ca2+-activated protease was determined electrophoretically. The calcium ionophore, A23187, produced a dose-dependent stimulation of Ca2+-activated protease-like activity in the presence of exogenous calcium but had no effect in the absence of external calcium. Both normal and thrombasthenic platelets generated Ca2+-activated protease-like activity in response to A23187. Ionophore-induced stimulation of Ca2+-activated protease-like activity was not affected by prior incubation of platelets with 8-bromo cyclic GMP, 8-bromo cyclic AMP, prostaglandin E1, prostaglandin I2, indomethacin or tetracaine, but was inhibited by the sulfhydryl inhibitor N-ethylmaleimide. These results confirm the presence of Ca2+-activated protease in platelets and indicate that the source of calcium important in Ca2+-activated protease stimulation is in part extracellular. Other aggregating agents, thrombin, epinephrine, and ADP, were not accompanied by hydrolysis of actin-binding protein, indicating that the alteration in ionic calcium that occurs during aggregation by these other agents is insufficient to generate Ca2+-activated protease-like activity as measured by the present analytical technique.  相似文献   

20.
Cultured endothelial cells from human umbilical vein were incubated with (3H)arachidonic acid for 24 hours. The label was incorporated into phospholipids (79.3 %), neutral lipids (15.6 %) and non-esterified fatty acids (4.7 %). Upon challenge with the calcium ionophore A 23187, 5.3 % of the total radioactivity were found in supernatant and corresponded to 6-keto-prostaglandin F (1.6 %) and free arachidonic acid (3.7 %). This release was accompanied by a concomitant and selective decrease of phosphatidylcholine. It is concluded that the entry of calcium promoted by A 23187 activates a phospholipase A2 regulating the availability of arachidonic acid to the prostacyclin synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号