首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Recombinant CHO-K1 cells, expressing human soluble thrombomodulin, were cultured in a serum-free medium and characteristics of the culture associated with glucose and lactate were investigated. In 3 L fermentor (3LFM) cultures, the cell density was found to have a proportional relationship with the volumetric glucose consumption rate, and the specific glucose consumption rates were constant at about 0.2 mg/(106 cells·d) despite many differences in the culture conditions. Thus, it was concluded that the glucose consumption rate is little influenced by the condition of the cells or the culture conditions, and that the cell density can be estimated by the glucose consumption rate calculated from glucose measurement. Two types of thrombomodulin (rsTMα and rsTMβ) were produced, in which rsTMβ possesses chondroitin-4-sulfate and has greater anticoagulant activities than rsTMα. Therefore, it is important to investigate the rsTMα and rsTMβ production properties, and to determine the optimal culture conditions for high rsTMβ production. The most important factor to increase the production of rsTMβ relative to rsTMα (the β/α ratio) was effective aeration. Moreover, a lower ratio of lactate production/glucose consumption (the L/G ratio) with sufficient oxygen, high glucose concentration, and a longer medium exchange interval contributed to a higher specific rsTMβ production rate. Since there was a linear relationship between the production rate of each type of rsTM and the overall rsTM production rate per liter, it is expected that the rsTMα and rsTMβ production rates may be able to be estimated from the overall rate and the rsTMβ production increased by increasing the overall rsTM production with a lower L/G ratio.  相似文献   

2.
Cultivation of gene-engineered Chinese hamster ovary (CHO-K1) cells that produce recombinant human soluble thrombomodulin (rsTM) was investigated to optimize conditions for high-level expression of the protein in a serum-free medium. For economic protein production, oxygenation of cultures with pure O2 permitted sufficient cell growth for high rsTM production with only 1 g/l of microcarriers and a low foetal bovine serum concentration. A longer growth phase (over 5 days) with serum was important to establish sufficient growth of this cell line on the microcarriers for subsequent serum-free culture, and to support a long-term production phase (about 2 months). In the production phase, a high glucose concentration (6.15 g/l) in the serum-free medium was very effective for prolonging the harvest cycle interval. Under these conditions, up to 100 mg/l rsTM was expressed in the conditioned medium. The rates of glucose consumption (G) and lactae production (L) were measured periodically and their ratio (L/G ratio) correlated with rsTM productivity. When the average L/G ratio was lower, reflecting a lower lactate production rate due to appropriate oxygenation of the culture, the specific rsTM production rate increased. Thus it may be possible to estimate protein productivity from L/G ratios calculated from the glucose and lactate measurements. Correspondence to: M. Ogata  相似文献   

3.

Background  

To ensure maximal productivity of recombinant proteins (rP) during production culture it is typical to encourage an initial phase of rapid cell proliferation to achieve high biomass followed by a stationary phase where cellular energies are directed towards production of rP. During many such biphasic cultures, the initial phase of rapid cell growth at 37°C is followed by a growth arrest phase induced through reduction of the culture temperature. Low temperature induced growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase, although the mechanisms regulating these phenotypes during mild hypothermia are poorly understood.  相似文献   

4.
This paper describes the first miRNA analysis carried out on hamster cells specifically Chinese hamster ovary (CHO) cells which are the most important cell line for the manufacture of human recombinant biopharmaceutical products. During biphasic culture, an initial phase of rapid cell growth at 37 degrees C is followed by a growth arrest phase induced through reduction of the culture temperature. Growth arrest is associated with many positive phenotypes including increased productivity, sustained viability and an extended production phase. Using miRNA bioarrays generated with probes against human, mouse and rat miRNAs, we have identified 26 differentially expressed miRNAs in CHO-K1 when comparing cells undergoing exponential growth at 37 degrees C to stationary phase cells at 31 degrees C. Five miRNAs were selected for qRT-PCR analysis using specific primer sets to isolate and amplify mature miRNAs. During this analysis, two known growth inhibitory miRNAs, miR-21 and miR-24 were identified as being upregulated during stationary phase growth induced either by temperature shift or during normal batch culture by both bioarray and qRT-PCR. Sequence data confirmed the identity of cgr-miR-21, a novel Cricetulus griseus ortholog of the known miRNA miR-21. This study offers a novel insight into the potential of miRNA regulation of CHO-K1 growth and may provide novel approaches to rational engineering of both cell lines and culture processes to ensure optimal conditions for recombinant protein production.  相似文献   

5.
A CHO-K1 cell line stably expressing a recombinant full-length human PDE-IVa (HSPDE4A4B) enzyme was established under hygromycin B selection. Full-length expression of the protein was determined by Western blot analysis, which revealed the presence of a 125-kDa immunoreactive band using rabbit anti-PDE-IVa antibodies. The potency of inhibitor compounds was examined by their ability to increase cAMP in the whole-cell, and by their ability to inhibit cAMP hydrolysis in a 100,000g supernatant (soluble enzyme preparation) obtained from the same cell line. Inhibition of the expressed PDE-IVa activity by selective PDE-IV inhibitors—(R) and (S)-rolipram, RS 14203, and CDP 840—at 100 nM substrate demonstrated that RS 14203 and CDP 840 were the most potent with IC50=9 nM, followed by (R)-rolipram (IC50=110 nM) and (S)-rolipram (IC50=420 nM). The rank order of potencies of the inhibitors in elevating cAMP in the whole-cell assay was quite different from that on the soluble enzyme. RS 14203 was still the most potent compound in elevating cAMP. Moreover, the relative rank order of potencies between CDP 840 and (R)-rolipram changed dramatically, such that (R)-rolipram was more potent than CDP 840 = (S)-rolipram. An apparent 30-fold stereoselectivity between (R)- and (S)-rolipram was also noted. The whole-cell rank order of potencies was also maintained when PKA activity ratios were measured in place of cAMP levels. The ability of the compounds to elevate cAMP in the stable CHO-K1 cells appeared to track better with the potency of the compounds against the high-affinity (Sr) conformer of the enzyme rather than the low-affinity catalytic state.  相似文献   

6.
Genotoxic effects of o-phenylphenol metabolites in CHO-K1 cells   总被引:1,自引:0,他引:1  
The effects of microsomal activation and/or deactivation on the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) in cultured Chinese hamster ovary cells (CHO-K1 cells) by o-phenylphenol (OPP) were studied, and concurrently the metabolites were determined. After a 3-h incubation in the presence of 15% S9 mix (45 microliters/ml of S9), OPP (25-150 micrograms/ml) dose-independent SCEs and chromosomal aberrations were induced, while the amount of phenylhydroquinone (PHQ) metabolite produced from OPP did not increase linearly in the higher doses. The maximum induction of chromosomal aberrations was 18% at the 150 micrograms/ml dose, and of SCEs 13.8/cell at 75 micrograms/ml. The corresponding control values were 3% and 5.8/cell. The lowest dose required to induce SCEs in the presence of S9 mix was 25 micrograms/ml. Changing the percent of S9 mix (0-50%) while holding the OPP dose constant (100 micrograms/ml) produced a correlation between SCEs and the production of PHQ. PHQ caused cytogenetic effects both with and without S9 mix, however, in the absence of S9 mix it was more lethal and was oxidized to phenylbenzoquinone (PBQ). These results suggest that the enhanced cytogenetic effects of OPP by the addition of S9 mix correlated with the amount of PHQ produced or with the further oxides of PHQ such as phenylsemiquinone and/or PBQ which are capable of being produced from PHQ spontaneously or by the mixed-function oxidase system.  相似文献   

7.
AimInvestigation of the bystander effect in Chinese Hamster Ovary cells (CHO-K1) co-cultured with cells irradiated in the dose range of 0.1–4 Gy of high LET 12C ions and X-rays.BackgroundThe radiobiological effects of charged heavy particles on a cellular or molecular level are of fundamental importance in the field of biomedical applications, especially in hadron therapy and space radiation biology.Materials and methodsA heavy ion 12C beam from the Heavy Ion Laboratory of the University of Warsaw (HIL) was used to irradiate CHO-K1 cells. Cells were seeded in Petri dishes specially designed for irradiation purposes. Immediately after irradiation, cells were transferred into transwell culture insert dishes to enable co-culture of irradiated and non-irradiated cells. Cells from the membrane and well shared the medium but could not touch each other. To study bystander effects, a clonogenic survival assay was performed.ResultsThe survival fraction of cells co-cultured with cells irradiated with 12C ions and X-rays was not reduced.ConclusionsThe bystander effect was not observed in these studies.  相似文献   

8.
Apoptosis is a distinct form of programmed cell death that plays an important role in many biological processes.Although the phenotypes of apoptotic cells are well documented, little is known of the central mechanismleading to programmed cell death. Over the past few years, a number of ICE/CED-3 family proteases(also termed caspases) have been discovered and implicated as the common effectors of apoptosis. Inthis report, we demonstrate that induction of apoptosis in CHO-K1 cells by staurosporine, a broad spectruminhibitor of protein kinases, results in an increase in DEVD-dependent protease activity. These events werefollowed by nuclear DNA fragmentation and cell death. Inhibition of the DEVD-cleaving activity by a synthetictetrapeptide inhibitor DEVD-CHO, blocked staurosporine-induced downstream apoptotic phenotypes, suchas morphological characteristics and DNA fragmentation. These results suggest that staurosporine-inducedapoptosis in CHO-K1 cells is mediated through the CPP32/caspase-3-like cysteine proteases.  相似文献   

9.

Background

Sigma-1 receptors are involved in regulation of neuronal activities presumably through regulation of the activity of ion channels. Sigma-1 receptors also play a role in growth and metastasis of cancerous cells. Intracellular distribution of sigma-1 receptors have been linked to sphingolipid-enriched domains.

Results

We report that in CHO-K1 cells sigma-1 receptors target to focal adhesion contacts (FAC) where they colocalize with Talin and Kv1.4 potassium channels. The levels of sigma-1 receptors in the FAC were significantly increased by application of sigma-1 receptor ligands and by filamentous actin (F-actin) polymerization with phalloidin. The total length of FAC (measured by the focal adhesion marker, talin) was concomitantly increased in the presence of sigma-1 receptors upon phalloidin treatment. Only sigma-1 receptor ligands, however, resulted in an increase of sigma-1 receptors in the FAC, independent of talin. Additionally, a novel approach was utilized to allow an assessment of the half life of endogenous sigma-1 receptors in CHO-K1 cells, which was measured to be at least 72 hours.

Conclusion

Ligand activated sigma-1 receptors translocate into FAC from a pool of receptors stored in ER lipid rafts presumably for inhibition of Kv1.4 channels. Stabilization of actin filaments is likely to be important for targeting sigma-1 receptors to Focal Adhesion Contacts in CHO-K1 cells.  相似文献   

10.
Summary Continuous culture is an attractive research tool in physiologic and growth and production kinetics research. However, fulfillment of the basic assumptions of continuous culture in the experimental set-up may cause problems. The homogeneity of plant cell cultures and effluent, particularly, may cause problems. This paper presents an experimental set-up which solves these problems and describes the use of this equipment in a study of the growth kinetics of plant cells. Industrial application of the continuous culture of plant cells in the production of secondary metabolites seems to be profitable when compared with batch or fed-batch cultures. However, various problems such as uncoupled product formation and strain instability make fed-batch culture a better choice. Presented in the Session-in-Depth Batch Production and Fermentation at the 1991 World Congress on Cell and Tissue Culture, Anaheim, California, June 16–20, 1991.  相似文献   

11.
According to studies earlier, amino acids have proven to be antidiabetic, antiglycating, and anticataractogenic. The present study was to explore whether amino acids as mixtures could enhance glucose uptake in CHO-K1 cells specifically. The cells in F-12K1 serum-free medium were exposed to normal (7 mM) and high glucose (12, 17 and 27 mM) in the presence and absence of amino acids mixture (AAM) in varying concentration (2.5, 5 and 10 mM). The mixture 5 and 10 mM AAM increased the 2-deoxyglucose (2DG) uptake at all glucose concentration significantly. There was also a significant increase in the GLUT4 (glucose transporter) translocation as revealed by flow cytometer. Addition of a mixture of amino acids was found to improve cell viability, which got altered by high glucose in the CHO-K1 cells. Amino acids as mixture had a beneficial effect in improving the net utilization of glucose as an additive effect with insulin.  相似文献   

12.
Some environmental estrogen-like compounds, such as bisphenol A (BPA), 4-nonylphenol (NP), 4-octylphenol (OP), propyl p-hydroxybenzoate (P-PHBA), and butyl p-hydroxybenzoate (B-PHBA), synthetic estrogen, diethylstilbestrol (DES), and natural estrogen, 17beta-estradiol (E2), were studied for their genotoxicity in CHO-K1 cells using sister-chromatid exchange (SCE), chromosome aberration (CA), and DNA strand break (comet) assays. Six of the chemicals, excluding E2, caused DNA migration in the comet assay and induced SCEs at one or more of the highest doses. Among the chemicals, OP produced an especially high incidence of SCEs. Structural CA was induced by five of the chemicals, excluding OP and NP, and BPA, E2, and DES also induced aneuploid cells. E2 and DES particularly increased the rate of polyploidy at high doses. The incidence of colchicine-mitosis-like (c-mitotic) figures suggesting spindle disrupting effects was also detected with five of the chemicals, excluding OP and NP, and six of the chemicals, excluding E2, caused endoreduplication (ERD), a form of nuclear polyploidization induced by block of cell cycle at G2 phase, at one or more high doses. Our present results suggest that OP and NP cause repairable DNA damage, including SCEs, and do not result in CA, while the damage caused by DES, BPA, P-PHBA, and B-PHBA results in the induction of CAs together with SCEs probably because of imperfect repair. We are unable to explain the observation that the DNA damage caused by E2 resulted in CA induction but not DNA migration or SCE induction, except for speculating that the DNA damage is different from that caused by DES and the estrogen-like chemicals. Our findings also suggest that E2, DES and BPA have aneuploidogenic properties, and that the former two of chemicals also are polyploidy-inducing agents.  相似文献   

13.
This paper addresses the problem of the production of defective cells within clones arising from irradiated progenitor cells and is specifically aimed at answering the question of whether lethal mutations result from a generalised effect which lowers the ability of all the progeny to divide successfully or whether it represents a late expressed but unique lethal defect induced by radiation which occurs in some cells only and which causes those cells only to cease dividing. The results obtained from autoradiographic analysis of cells within individual surviving colonies (i.e. containing more than 150 cells) suggests that some cells in all clones are not synthesizing DNA over a 9-h period and that the proportion of non-synthesising cells rises with increasing dose of radiation from less than 3% in the controls to 80-85% after a progenitor dose of 12.5 Gy. Because of the possibility that cells had longer division times post irradiation, these results were repeated using Ki67 antibody labelling, a technique which identifies cells which are in cycle. The results were similar. This suggests the non-labelled cells were not reproducing. Both techniques were also used to look at the % labelling of morphologically abnormal cells in the colonies. The results suggested that up to 35% of these abnormal cells were actively cycling and about 20% were synthesising DNA. Abnormal cells did not appear in subcultures of survivor progeny suggesting that they may have failed to replate successfully and may contribute to the lethally mutated population. The idea that radiation induces a general instability in the cell population was supported by experiments where growth and the plating efficiency of irradiated progeny was measured daily. This revealed that the growth curves deviated from the control by a constant factor suggesting a division probability of about 70% of the control level after a progenitor dose of 10 Gy. The results are discussed in the context of their significance for survival curve analysis and for radiotherapy and radiation protection results.  相似文献   

14.
Analyzed in this study is the organization of mitotic spindle poles in CHO-K1 cells dividing after treatment with etoposide (1 h, 25 μM). At various periods after the treatment, we studied the following: (1) the distribution of γ-tubulin in mitotic cells by immunofluorescent staining, (2) the level of post-translational modification of α-tubulin in spindle microtubules by immunoelectron microscopy, and (3) the ultrastructure of mitotic apparatus poles by standard electron microscopy. 48 h after the addition of etoposide, disturbances in the ultrastructure of mitotic spindle poles were observed in etoposide-treated CHO-K1 cells with both bipolar and with multipolar mitotic apparatuses. The increased number of centrioles was unevenly distributed between the mitotic spindle poles; some centrioles did not take an obvious part in the mitotic spindle organization and differed in their number of outgrowing microtubules. Most centrioles were without fibrillar halos. Immunoelectron microscopy showed the differences in the staining of the poles of a multipolar spindle within one cell with antibodies to tyrosinated α-tubulin, whereas the staining of cells with antibodies to acetylated α-tubulin did not reveal such differences. Immunofluorescence staining for γ-tubulin also indicated differing organizations of poles in the same spindle. Our data findings provided the first evidence that the pattern of immunostaining and ultrastructure of mitotic apparatus poles can differ in cells dividing at various time periods after the action of etoposide.  相似文献   

15.
16.
To study global regulation in the methanogenic archaeon Methanococcus maripaludis, we devised a system for steady-state growth in chemostats. New Brunswick Bioflo 110 bioreactors were equipped with controlled delivery of hydrogen, nitrogen, carbon dioxide, hydrogen sulfide, and anaerobic medium. We determined conditions and media compositions for growth with three different limiting nutrients, hydrogen, phosphate, and leucine. To investigate leucine limitation we constructed and characterized a mutant in the leuA gene for 2-isopropylmalate synthase, demonstrating for the first time the function of this gene in the Archaea. Steady state specific growth rates in these studies ranged from 0.042 to 0.24 h(-1). Plots of culture density vs. growth rate for each condition showed the behavior predicted by growth modeling. The results show that growth behavior is normal and reproducible and validate the use of the chemostat system for metabolic and global regulation studies in M. maripaludis.  相似文献   

17.
Continuous culture of RPMI 8226 human hematopoietic cells was performed. The viable cell number and glucose, lactate and ammonium concentrations became constant within 3–4 days at a constant dilution rate. The viable cell number decreased at low and high dilution rates. The growth and product yields slightly depended on the dilution rate, except for product yield for lactate based on cell number. Growth characteristics of these cells at various dilution rates could be expressed by equations considering the maintenance energy in growth yield. Maximum specific growth rate could be evaluated from the wash-out profile and the known inhibition constants.  相似文献   

18.
This report describes the characterization and partial purification of rat liver 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase activity. A preliminary characterization of Chinese hamster ovary (CHO) cell HMG CoA synthase activity is also presented. Ion-exchange chromatography of ammonium sulfate precipitates of rat liver cytosol indicate the existence of two isoenzymes of HMG CoA synthase. These isoenzymes are physically, catalytically, and immunologically distinct. One of these isoenzymes, peak 1, resembles mitochondrial HMG-CoA synthase activity as evidenced by similarities in elution upon ion-exchange chromatography, inhibition by MgCl2, and cross reactivity with an antibody prepared against the mitochondrial enzyme. As peak 1 activity is unstable, further purification studies were performed on peak 2 activity. Peak 2 can be further resolved into two activities (peaks 2A and 2B) by gel filtration. In contrast, CHO-K1 cells (a permanent fibroblast line) possess only peak 2 type HMG CoA synthase activity.  相似文献   

19.
Several laboratories have reported that exposure of cells to UV radiation results in a significant imbalance in deoxynucleoside triphosphate pool concentrations. In our CHO-K1 cells, a rapid drop in dCTP is accompanied by a rapid increase in dTTP. Examination of enzyme activities associated with synthesis/degradation of these molecules suggests that UV transiently enhances a putative dCTPase, dCMP deaminase and CdR kinase activities. This results in accumulation of excess dUMP which is probably converted to dTMP, then to dTTP. The absence of dCMP deaminase in V79 cells prohibits this rapid response in those cells. Moreover, significantly different dCMP deaminase activities were observed in CHO-K1 cells obtained from other laboratories, suggesting they, too, may respond differently to irradiation.  相似文献   

20.
对自行筛选的3个可利用废弃油脂进行发酵生产鼠李糖脂的铜绿假单胞菌菌株进行评价,并进行了种子培养条件和摇瓶发酵部分条件的优化。种子培养优化实验表明,当培养基pH 6~8,培养温度为30 ℃时最利于菌体生长。菌株均具有一定的耐盐性,在5%的盐度下生长未受到明显抑制,因此在沿海地区采用盐水或海水发酵具有较广阔的应用前景。通过排油圈、表面张力、苯酚-H2SO4比色法比较了这3个菌株的表面活性剂表面活性的大小,以表现较好的Z41进行了摇瓶发酵条件的优化。单因素实验表明,发酵较优条件为发酵温度30 ℃,接种量5%。在此基础上,通过正交试验对Z41菌株发酵培养基中的C、N源进行了研究,实验结果表明,在考虑因素间交互作用和发酵成本的情况下,最佳C源为3%炸货油,最佳N源为3.5 g/L尿素。在此发酵条件下,糖脂产量较高13.024 g/L,且成本较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号