首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultivation of gene-engineered Chinese hamster ovary (CHO-K1) cells that produce recombinant human soluble thrombomodulin (rsTM) was investigated to optimize conditions for high-level expression of the protein in a serum-free medium. For economic protein production, oxygenation of cultures with pure O2 permitted sufficient cell growth for high rsTM production with only 1 g/l of microcarriers and a low foetal bovine serum concentration. A longer growth phase (over 5 days) with serum was important to establish sufficient growth of this cell line on the microcarriers for subsequent serum-free culture, and to support a long-term production phase (about 2 months). In the production phase, a high glucose concentration (6.15 g/l) in the serum-free medium was very effective for prolonging the harvest cycle interval. Under these conditions, up to 100 mg/l rsTM was expressed in the conditioned medium. The rates of glucose consumption (G) and lactae production (L) were measured periodically and their ratio (L/G ratio) correlated with rsTM productivity. When the average L/G ratio was lower, reflecting a lower lactate production rate due to appropriate oxygenation of the culture, the specific rsTM production rate increased. Thus it may be possible to estimate protein productivity from L/G ratios calculated from the glucose and lactate measurements. Correspondence to: M. Ogata  相似文献   

2.
Recombinant CHO-K1 cells, expressing human soluble thrombomodulin, were cultured in a serum-free medium and characteristics of the culture associated with glucose and lactate were investigated. In 3 L fermentor (3LFM) cultures, the cell density was found to have a proportional relationship with the volumetric glucose consumption rate, and the specific glucose consumption rates were constant at about 0.2 mg/(106 cells·d) despite many differences in the culture conditions. Thus, it was concluded that the glucose consumption rate is little influenced by the condition of the cells or the culture conditions, and that the cell density can be estimated by the glucose consumption rate calculated from glucose measurement. Two types of thrombomodulin (rsTMα and rsTMβ) were produced, in which rsTMβ possesses chondroitin-4-sulfate and has greater anticoagulant activities than rsTMα. Therefore, it is important to investigate the rsTMα and rsTMβ production properties, and to determine the optimal culture conditions for high rsTMβ production. The most important factor to increase the production of rsTMβ relative to rsTMα (the β/α ratio) was effective aeration. Moreover, a lower ratio of lactate production/glucose consumption (the L/G ratio) with sufficient oxygen, high glucose concentration, and a longer medium exchange interval contributed to a higher specific rsTMβ production rate. Since there was a linear relationship between the production rate of each type of rsTM and the overall rsTM production rate per liter, it is expected that the rsTMα and rsTMβ production rates may be able to be estimated from the overall rate and the rsTMβ production increased by increasing the overall rsTM production with a lower L/G ratio.  相似文献   

3.
Summary Recombinant human interferon- production by Chinese hamster ovary cells was restricted to the growth phase of batch cultures in serum-free medium. The specific interferon production rate was highest during the initial period of exponential growth but declined subsequently in parallel with specific growth rate. This decline in specific growth rate and interferon productivity was associated with a decline in specific metabolic activity as determined by the rate of glucose uptake and the rates of lactate and ammonia production. The ammonia and lactate concentrations that had accumulated by the end of the batch culture were not inhibitory to growth. Glucose was exhausted by the end of the growth phase but increased glucose concentrations did not improve the cell yield or interferon production kinetics. Analysis of amino acid metabolism showed that glutamine and asparagine were exhausted by the end of the growth phase, but supplementation of these amino acids did not improve either cell or product yields. When glutamine was omitted from the growth medium there was no cell proliferation but interferon production occurred, suggesting that recombinant protein production can be uncoupled from cell proliferation. Offprint requests to: P. M. Hayter  相似文献   

4.
A Chinese hamster ovary (CHO) cell line that expresses human erythropoietin (huEPO) was in a 2-L Cytopilot fluidized-bed bioreactor with 400 mL macroporous Cytoline-1 microcarriers and a variable perfusion rate of serum-free and protein-free medium for 48 days. The cell density increased to a maximum of 23 x 10(6) cells/mL, beads on day 27. The EPO concentration increased to 600 U/mL during the early part of the culture period (on day 24) and increased further to 980 U/mL following the addition of a higher concentration of glucose and the addition of sodium butyrate. The EPO concentration was significantly higher (at least 2x than that in a controlled stirred-tank bioreactor, in a spinner flask, or in a stationary T-flask culture. The EPO accumulated to a total production of 28,000 kUnits over the whole culture period. The molecular characteristics of EPO with respect to size and pattern of glycosylation did not change with scale up. The pattern of utilization and production of 18 amino acids was similar in the Cytopilot culture to that in a stationary batch culture in a T-flask. The concentration of ammonia was maintained at a low level (< 2 mM) over the entire culture period. The specific rate of consumption of glucose, as well as the specific rates of production of lactate and ammonia, were constant throughout the culture period indicating a consistent metabolic behavior of the cells in the bioreactor. These results indicate the potential of the Cytopilot bioreactor culture system for the continuous production of a recombinant protein over several weeks.  相似文献   

5.
赵亮  范里  张旭  谭文松 《生物工程学报》2009,25(7):1069-1076
抗-CD25单克隆抗体作为免疫抑制剂拥有广阔的市场前景和巨大的经济价值。本实验以表达抗?CD25单克隆抗体的GS-NS0细胞为研究对象,开发了支持其大规模培养和抗体表达的无血清低蛋白培养基,批培养最大活细胞密度和最大抗体浓度分别达3×106cells/mL和300mg/L以上,比商业无血清培养基(Excell 620+0.2% primatone)分别提高了100%和46%。通过批培养实验,研究了细胞的生长、葡萄糖和氨基酸代谢、以及产物表达特点,并揭示了批培养过程中初始葡萄糖浓度对GS-NS0细胞生长与代谢的影响规律。为优化GS-NS0细胞培养过程和抗CD25单抗成功迈向产业化提供了重要的科学依据。  相似文献   

6.
In spite of the generally stable nature of immobilized perfusion culture, its profile of target protein production frequently shows variations. This might be explained by the drift in the metabolism of cultured cells. To address this issue, we performed a set of four Opticell bioreactor cultures producing recombinant anticogulant protein PCGFX. All the cultures lasted 40-50 days with the oxygen consumption rate (OCR) mostly around 10 μmol min−1; nevertheless, glucose and lactate metabolism was fluctuated with a parallel fluctuation in the recombinant protein productivity (RPP). The mean productivity of recombinant PCGFX was determined to be about 1.0 mg day−1 for all the cultures. The statistical analysis revealed a significant correlation between the lactate production rate (LPR) and RPP in two cultures. A significant correlation was further found between average OCR and RPP in another culture where OCR was exceptionally lowered under serum-free conditions. No parameter significantly correlated with RPP in the remaining one culture; thus, the overt drift of RPP resulted, at least partly, from that of the cell metabolic activity and the present data should be helpful to explore a strategy for maximizing productivity.  相似文献   

7.
Effects of glucose on a cultured Chinese hamster ovary cell line producing recombinant human protein C were investigated. After the recombinant cells reached confluency, they were maintained in the medium containing 10% serum and different levels of glucose in either batch or daily-exchange mode. High concentrations of glucose to the cultures yielded higher cell densities. Daily exchanges of media produced higher cell densities than the corresponding batch culture. Total protein C production per cell decreased with time in batch culture, in accordance with the declined glucose metabolism. Supplementation of the media with high levels of glucose diminished both the expression and gamma-carboxylation activities of the recombinant cells. Production of protein C persisted in daily-exchange culture, resulting in a constant production rate of protein C. In this case again, glucose reduced the specific productivity of recombinant protein C. An apparent glucose inhibition constant was determined to be 0.11 mg/mL by Dixon plots. The ability to gamma-carboxylate recombinant protein C was also impaired at the highest level of glucose. From these results, a strategy to maximize recombinant protein C productivity is discussed.  相似文献   

8.
Mouse hybridoma cells were grown in suspension in continuous stirred bioreactors. Cell growth, substrate utilization, and monoclonal antibody (MAb) production were studied using serum-free medium. Steady-state data were obtained at different dilution rates, between 0.012 and 0.039 h(-1) Viability was profoundly affected by dilution rate, particularly near the lower end of the dilution-rate range investigated. MAb concentration and productivity went through a maximum with respect to dilution rate. Lactate yield on glucose declined with in creasing dilution rate. Experiments were carried out to study the effects of medium glucose concentration on cell growth, product formation, and lactate yield on glucose. Reduction of glucose concentration in the feed medium did not considerably affect cell density and MAb concentration in the culture, but lactate levels dropped sharply; lactate yield on glucose declined substantially, indicating alterations in cell metabolic path ways for energy metabolism. Optimization strategy for continuous cell culture is discussed.  相似文献   

9.
Summary The main fermentation end products in batch culture (unlimited glucose supply) of Clostridium barkeri were butyrate and lactate. The specific rate of butyrate production was linearly proportional to the growth rate while the specific rate of lactate production increased at low growth rates. In a glucose limited chemostat culture butyrate production was partly growth associated while acetate and lactate production was growth associated. Lactate was, however, only produced at high dilution rates. By varying the glucose concentration in the inflowing medium it was shown that lactate production was stimulated by a high feeding rate of the carbon source. These results are discussed in view of the fructose-1,6-diphosphate dependent lactate dehydrogenase activity in many other organisms.  相似文献   

10.
以悬浮适应的表达尿激酶原CHO工程细胞为研究对象,在100mL的摇瓶中进行无血清悬浮培养,以细胞密度、细胞活力、Pro-UK活性、葡萄糖比消耗速率(qglc)、乳酸比生产速率(qlac)、乳酸对葡萄糖的得率系数(Ylac/glc)为观察指标,同时以细胞有血清悬浮培养作为参照,考察CHO工程细胞无血清悬浮培养生长和代谢特征。观察结果表明,CHO工程细胞在无血清及有血清悬浮培养条件下表现为大致相似的细胞生长和代谢特征。在此基础上,依据实际检测的数据,应用MATLAB软件对细胞对数生长期的细胞生长、乳酸生成及葡萄糖消耗的模型参数进行非线性规划,获得全局性收敛的最优参数估计值,建立了细胞在无血清培养条件下的生长及代谢动力学模型。  相似文献   

11.
Recombinant L-929 cells transfected with the human erythropoietin (EPO) gene were immobilized in a macroporous cellulosic support and its derivatives in which charged groups or cell attachment factors were introduced. The immobilized cells were cultured in serum-containing and serum-free media. Comparable production of EPO was observed even in the serum-free medium when a support modified by polyethyleneimine was used for immobilization. The cells immobilized on the supports were cultured in fluidized-bed and inner-loop type air-lift bioreactors for continuous production of EPO. A high cell density of more than 2 × 107 cells/cm3-support and high EPO productivity were achieved and maintained for 50 d through the use of the inner-loop type air-lift bioreactor. The productivity was 13.4-fold higher than that of conventional static cultures in petri-dishes.  相似文献   

12.
The evolution of basal synthetic formulations to support mammalian cell culture applications has been facilitated by the contributions of many investigators. Definition of minimally-required nutrient categories by Harry Eagle in the 1950's spawned an iterative process of continuous modification and refinement of the exogenous environment to cultivate new cell types and to support emerging applications of cultured mammalian cells. Key historical elements are traced, leading to the development of high potency, basal nutrient formulations capable of sustaining serum-free proliferation and biological production. Emerging techniques for alimentation of fed batch and continuous perfusion bioreactors, using partial nutrient concentrates deduced from spent medium analysis, can enhance medium utilization and bioreactor productivity.  相似文献   

13.
A clone, AH-01S, derived from a human monocytic leukemia cell line, THP-1, grew rapidly in a serum-free medium containing insulin, transferrin, ethanolamine, and sodium selenite. In batch culture using the serum-free medium, the AH-01S cells proliferated at a specific growth rate (μ) of 0.30 to 0.50 (1/day) from a cell concentration of 1 × 104 cells/ml to 1.6 × 106 cells/ml, an increase of 160 times. A higher cell concentration of 0.45 × 107 cells/ml (cell volume ratio was 0.5%) was obtained in spinner flask culture using the serum-free medium. A mean specific growth rate 0.50 (1/day) was also observed in a culture in a fully instrumented cell culture fermentor. However, μ decreased drastically after the cell concentration reached 1.5 × 106 cells/ml. Analyses of medium composition during cultivation revealed that under lower cell concentration, l-glutamine was the main carbon source while glucose was converted to lactate almost stoichiometrically, and that the production of lactate from glucose decreased at higher cell concentrations. To obtain cultures of 1 × 109 cells, 1,200 to 1,300 mg of a carbon source (glucose) and 400 to 500 of amino acids were consumed during high cell concentration cultivation of the AH-01S cells in the serum-free medium.  相似文献   

14.
Microalgae are a promising feedstock for biofuel production. Lipid content in microalgae could be enhanced under nutrient depletion. This work investigated the effect of the nutrient on lipid accumulation in Ankistrodesmus sp. culture. Batch cultures were carried out using fresh BG11 medium, and after the harvest, the medium was reused for the next culture; this method was repeated two times. The maximum lipid productivity of 29.75 mg L?1 day?1 was obtained from the culture with the second reuse medium. In continuous cultures, Ankistrodesmus sp. was cultured in both fresh and modified BG11 mediums. The modified BG11 medium was adjusted to resemble the content of the first reuse medium. As a comparison between batch and continuous cultures, it was proven that the productivity in the continuous culture was better than in the batch, where the achievable maximum biomass and lipid were 188.30 and 38.32 mg L?1 day?1. The maximum lipid content of 34.22% was obtained from the continuous culture at a dilution rate of 0.08 day?1, whereas the maximum saturated and unsaturated fatty acid productivities of 79.96 and 104.54 mg L?1 day?1 were obtained at a dilution rate of 0.16 day?1.  相似文献   

15.
Summary A continuous culture system of the salt-tolerant yeast Zygosaccharomyces rouxii (soy yeast) was investigated in order to obtain high production efficiency of viable cells. The optimum pH and C/N ratio of the feed medium for cell production were about 5.0 and 16–20, respectively. About a fivefold increase in viable cell number and cell productivity (viable cell number per litre per hour) were obtained in glucose-limited culture at a dilution rate (D) of 0.06 h–1 as compared with batch culture. However, the fermentative activity of the cells from glucose-limited culture was significantly lower than those from batch and dissolved-oxygen (DO)-limited cultures, and the former cells showed lower specific activity of glycolytic enzymes. On the other hand, at the boundary conditions between glucose and DO limitation almost the same cell productivity and higher fermentative activity of the cell were obtained as compared with glucose-limited conditions. The cultivation continued for about 60 days without any problems even if the D was altered. It was found that the continuous cultivation method was suitable for industrial production of viable cells of soy yeasts. Offprint requests to: T. Hamada  相似文献   

16.
The production of α-amylase in batch and continuous cultures of the strain SP of Bacillus caldolyticus was studied using a maltose-casitone medium. The three quantitative parameters of α-amylase production (maximum values of the specific production rate, volumetric productivity and concentration of α-amylase) increased in continuous culture by 2.5, 4.6 and 3.8 times respectively in comparison with a batch culture. It was found that a mutant strain M1 of α-amylase production was predominant in every run of the continuous cultures. The strain M1 differs from the strain SP in that it can produce α-amylase constitutively in a batch culture while the cells of strain SP require maltose for α-amylase production. On the contrary, α-amylase production by the strain M1 was repressed partly by maltose. Moreover, glucose repression on α-amylase production was not observed for the M1 strain while it was remarkable for the strain SP. The above-mentioned properties of the mutant M1 concerning the regulation of α-amylase production are not only advantageous for industrial use but also interesting from the viewpoint of basic microbiology.  相似文献   

17.
It was found that the production of human monoclonal antibodies (MoAbs) by human-human hybridomas can be significantly enhanced by replacing glucose with fructose in the dish culture medium. Optimization of initial concentrations of fructose and glutamine, another influencing factor for MoAb production, enabled an enhanced production of human MoAb 2.1 times higher than that obtained using the conventional culture media employing glucose. It was shown by kinetic analysis that enhanced MoAb production at the optimum fructose concentration can be attributed to the retention of high specific antibody production rates and diminished time lag during the course of culture.These dish culture results with fructose-containing medium were successfully applied to the continuous perfusion culture with a slight modification, where 2.9- and 1.9-fold enhancements in specific antibody production rate and MoAb concentration, respectively, were attained as compared with the conventional glucose-containing medium.An inverse relationship was observed between the secreted concentrations of lactic acid and MoAb when the hybridoma was cultured in the media containing varying concentrations of fructose, i.e., the lower the lactic acid concentration, the higher the MoAb production andvice versa, suggesting that fructose at appropriate concentrations in the medium can serve as an alternative sugar for the efficient production of human MoAbs, with reduced pH shifts, for the serum-free culture of human-human hybridomas.  相似文献   

18.
Aims: This paper developed a novel process for lactic acid and chitin co-production of the pelletized Rhzious oryzae NRRL 395 fermentation using underutilized cull potatoes and glucose as nutrient source. Methods and Results: Whole potato hydrolysate medium was first used to produce the highest pelletized biomass yield accompanying the highest chitin content in biomass. An enhanced lactic acid production then followed up using batch, repeated batch and fed batch culture with glucose as carbon source and mixture of ammonia and sodium hydroxide as neutralizer. The lactic acid productivity peaked at 2·8 and 3 g l−1 h−1 in repeated batch culture and batch culture, respectively. The fed batch culture had the highest lactate concentration of 140 g l−1. Conclusions: Separation of the biomass cultivation and the lactic acid production is able to not only improve lactic acid production, but also enhance the chitin content. Cull potato hydrolysate used as a nutrient source for biomass cultivation can significantly increase both biomass yield and chitin content. Significance and Impact of the Study: The three-step process using pelletized R. oryzae fermentation innovatively integrates utilization of agricultural residues into the process of co-producing lactic acid and chitin, so as to improve the efficiency, revenues and cost of fungal lactic acid production.  相似文献   

19.
The mucin MUC1 is a candidate for use in specific immunotherapy against breast cancer, but this requires the large-scale production of a MUC1 antigen. In this study, a bioprocess for the expression of a recombinant MUC1 fusion protein with a cancer associated glycosylation in CHO-K1 cells has been developed. Cells permanently expressing parts of the extracellular portion of MUC1 fused to IgG Fc were directly transferred from adherent growth in serum-containing medium to suspension culture in the protein-free ProCHO4-CDM culture medium. Using the Cellferm-pro system, optimal culture parameter as pH and pO(2) were determined in parallel spinner flask batch cultures. A pH of 6.8-7.0 and a pO(2) of 40% of air saturation was found to give best cell growth and productivity of secreted recombinant protein. Specific productivity strongly depended the pO(2) and correlated with the online monitored oxygen uptake rate (OUR) of the cells, which indicates a positive influence of the rate of oxidative phosphorylation on productivity. The optimised conditions were applied to continuous perfusion culture which gave very high cell densities and space time yields of the recombinant MUC1 fusion protein, allowing production at gram scale. The product degradation was much lower in supernatants from continuous perfusion culture compared to batch mode. Antibodies reacting with cancer associated MUC1 glycoforms strongly bound to the fusion protein, indicating that the desired glycoforms were obtained and suggesting that the recombinant MUC1 protein could be tested for use in immunotherapy.  相似文献   

20.
To investigate the effect of human pyruvate carboxylase (hPC) on lactate formation in Chinese hamster ovary (CHO) cell lines, FLAG-tagged hPC was introduced into a dihydrofolate-deficient CHO cell line (DG44). Three clones expressing high levels of hPC, determined by Western blotting using an anti-FLAG monoclonal antibody, and a control cell line were established. Immunocytochemistry revealed that a substantial amount of expressed hPC protein was localized in the mitochondria of the cells. hPC expression did not impair cell proliferation. Rather, it improved cell viability at the end of adherent batch cultures with the serum-containing medium probably because of reduced lactate formation. Compared with control cells, specific lactate production rate of the three clones was decreased by 21–39%, which was because of a decreased specific glucose uptake rate and yield of lactate from glucose. Reduced lactate formation by hPC expression was also observed in suspension fed-batch cultures using a serum-free medium. Taken together, these results demonstrate that through the expression of the hPC enzyme, lactate formation in CHO cell culture can be efficiently reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号