首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A new chromatographic system for the simultaneous analysis of polyethylene glycol, dextran, sugars, and low-molecular-weight fatty acids was developed. The system is based on a gel exclusion column which allows a first separation between high- and low-molecular-weight compounds, and a cationic exchange column used to further separate the low-molecular-weight compounds. Two applications of the system were demonstrated: (i) after optimizing eluent conditions the gel exclusion column was used to determine the influence of lactic acid, phosphate buffer, and lactic acid bacteria on the ethylene oxide propylene oxide-dextran T40 phase diagram by HPLC; (ii) the ion exchange column was coupled in series with the gel exclusion column and the concentration of polyethylene glycol, dextran, glucose, lactate, acetate, and formate was determined in samples from the fermentative production of lactic acid in a polyethylene glycol 8000-dextran T40 aqueous two-phase system. The fermentation was operated without pH control in a repeated extractive batch mode, where the cell-free top phase was replaced four times, whereas the cell-containing bottom phase was reused repeatedly. The yield was 1.1 mol of lactic acid formed per mole of glucose added and the productivity was 4.7 mM.h(-1). The polymeric composition of the fermentation system was monitored during the five repeated extractive batches, and it showed a progressive depletion in polyethylene glycol and a progressive enrichment in dextran. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 303-311, 1997.  相似文献   

2.
Cationic lipid-DNA complexes are used as gene transfer vehicles in molecular biology and potentially in human gene therapy. In recent synchrotron X-ray scattering studies the molecular structure of such self-assembling aggregates was elucidated. A rich polymorphism of lamellar, hexagonal, lamellar-columnar and micellar mesophases was found. In this article we describe composite phases of cationic lipid mixed with hyaluronic acid and dextran sulfate which likewise form intercalated lamellar complexes. Heterogeneous phases of lipid/dextran sulfate mixed with lipid/DNA exhibit macroscopic phase separation. When dextran sulfate is added to preformed cationic lipid DNA complexes the latter are dissolved in favor of the lipid-polyelectrolyte phases. We investigated the kinetics of the DNA replacement by dextran sulfate. The experiments are intended to mimic the interaction of cationic lipid gene delivery complexes with highly charged extracellular matrix components.  相似文献   

3.
The feasibility of dissolved‐core alginate‐templated fluorescent microspheres as “smart tattoo” glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye‐labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution‐phase counterparts. The glucose sensitivity of the encapsulated TRITC‐Con A/FITC‐dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC‐apo‐GOx/FITC‐dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0–50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0–50 mM glucose, using near‐infrared dyes (Alexa Fluor‐647‐labeled dextran as donor and QSY‐21‐conjugated apo‐GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue. Biotechnol. Bioeng. 2009; 104: 1075–1085. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Benzoyl dextran with a degree of substitution of 0.18 was synthesized by reacting dextran T500 with benzoyl chloride. A new type of aqueous two-phase system composed of benzoyl dextran as bottom phase polymer and the random copolymer of ethylene oxide and propylene oxide (Ucon 50-HB-5100) as top phase polymer has been formed. The phase diagram for the system Ucon 50-HB-5100-benzoyl dextran with a degree of substitution of 0.18 was determined at room temperature. This two-phase system has been used to purify 3-phosphoglycerate kinase from bakers' yeast. The top-phase polymer (Ucon) can be separated from target enzyme by increasing the temperature. The bottom-phase polymer (benzyol dextran) could be recovered by addition of salt. Yeast homogenate was partitioned in a primary Ucon 50-HB-5100-benzoyl dextran aqueous two-phase system. After phase separation the top phase was removed and temperature-induced phase separation was used for formation of a water phase and a Ucon-rich phase. The benzoyl dextran-enriched bottom phase from the primary system was diluted, and the polymer was separated from water by addition of Na2SO4.  相似文献   

5.
The thermophilic fungus Thermomyces lanuginosus, which is able to use dextran as primary carbon source for growth, excreted during the early phases of growth an enzyme activity capable of degrading dextran. The activity peaked at 22 h and decreased rapidly after the culture entered the stationary phase, probably caused by protease activity. Results from growth on a number of different carbon sources showed that polymer carbohydrates yielded the highest dextranase activities. On the basis of the substrate specificity and the release of glucose in the α-anomeric form from the hydrolysis of maltose, it is proposed that the enzyme responsible for the necessary degradation of dextran to smaller saccharides is an α-glucosidase. Received: 30 November 1995 / Accepted: 14 February 1996  相似文献   

6.
Hydrolysis of soluble starch by glucoamylase and β-amylase was investigated as a model reaction in an aqueous two-phase system consisting of polyethylene glycol (PEG) and dextran (DEX). Changes in glucose concentration observed in the batch reaction experiments with glucoamylase were almost identical for the aqueous two-phase and pure water systems, showing that the enzymic reactions investigated were not influenced by the presence of PEG and DEX. The partition of β-amylase into the DEX phase was insufficient compared to that of glucoamylase. Hence, the former enzyme was crosslinked with glutaraldehyde to increase its apparent molecular weight and, as a consequence, the partition coefficient, defined as the concentration ratio of the component partitioned into the PEG phase to that into the DEX phase, was decreased to 17% of that of the original enzyme. In the operation in which the enzyme and substrate are partitioned selectively into the DEX phase and allowed to react there while the product, thus transferring to the PEG phase, is recovered, the aqueous two-phase system with a smaller partition coefficient provided longer operational stability.  相似文献   

7.
Summary Aqueous two-phase systems composed of dextran and poly (ethylene glycol) have been successfully used for glucose fermentation, cellulose hydrolysis and bioconversion of cellulose to ethanol. The biocatalysts are confined in the bottom phase whereas the products are extracted by the top phase.  相似文献   

8.
Bacillus circulans T-3040 produces cycloisomaltooligosaccharide glucanotransferase (CITase) and cycloisomaltooligosaccharides (cyclodextrans, CIs) when it is grown in media containing dextran as the carbon source. To investigate the effects of carbon sources on CITase activity, B. circulans T-3040 was cultured with glucose; sucrose; a mixture of isomaltose, isomaltotriose, and panose (IMOs); a mixture of maltohexaose and maltoheptaose (G67); dextrin (average degree of polymerization?=?36); dextran 40; and soluble starch. In addition to dextran 40, CIs were produced when the T-3040 strain was grown in media containing soluble starch as the sole carbon source. CITase production was induced by dextran 40, IMOs, and soluble starch but not by G67 or dextrin, which suggests that α-1,6 glucosidic linkages are required for CITase induction. Although CITase was induced by IMOs, no CIs were produced in the culture. CI-producing activity in the presence of soluble starch as the substrate (SS-CITase activity) was observed only in cultures containing dextran 40 or soluble starch. The production of CITase was significantly unaffected by glucose addition, but SS-CITase activity almost completely disappeared after glucose addition. A 135-kDa protein was found to contribute to CI formation from starch in the presence of CITase. This protein had a disproportionation activity with maltooligosaccharides, and its induction and inhibition system may be different from those of CITase.  相似文献   

9.
A detailed study of the influence of crude dextran on enzyme extractions in aqueous phase systems is presented in this article. The physical parameters of crude dextran, a purified T-500 fraction from Pharmacia, and a hydrolyzed crude dextran are compared and their influence on the phase system parameters investigated. Initially there is a drastic increase in the viscosity of the lower dextran-rich phase and a significant shift in the macroscopic structure of these phases, observed as the "gel-forming" properties of the dextran phases. The latter can be important for the partition of any enzyme by influencing the effect of phosphate concentration on the partition of proteins, although these experiments show that the partition coefficient of several enzymes is not much altered. The partition parameters allow the substitution of Dextran T-500 fractions by crude dextran or unfractionated, slightly hydrolyzed fractions. Using crude dextrans the performance and technical realization of enzyme extraction processes are demonstrated for pullulanase from Klebsiella pneumoniae and formate dehydrogenase from Candida boidinii.Both enzymes were recovered in comparable high yields. The equipment performance was quite good, as indicated by the high throughput values of the separators employed. Especially when using nozzle separators for phase separation there is a better performance in comparison to the Dextran T-500 fraction. No serious technical problems were encountered when replacing the expensive fractionated dextran with a crude dextran. In this way aqueous two-phase systems containing dextran become more feasible for enzyme purification from an economic point of view. The price of about 1.30 German marks (DM) per liter for a useful phase system already appears acceptable for the production of valuable intracellular enzymes.  相似文献   

10.
We describe the purification of lacrimal gland plasma membranes by affinity partitioning using a two-phase system containing polyethylene glycol and dextran in which wheat germ agglutinin conjugated to dextran is used as affinity ligand. When partitioning a microsomal fraction, the plasma membrane marker 5′-nucleotidase was obtained in the affinity ligand-containing bottom phase, whereas the endoplasmic reticulum marker NADH-ferricyanide reductase remained in the top phase. The affinity partitioning behaviour of components involved in exocytosis and cellular signalling was also examined.  相似文献   

11.
Summary We have determined phase diagrams at 22°C for the aqueous two-phase systems composed of dextran, polyethylene glycol, and water. The effects of polyethylene glycol and dextran molecular weight on phase separation are reported. These phase diagrams provide more complete data for dextran/PEG/water system, and will be needed for the correlation of biomolecule partitioning.  相似文献   

12.
Dextran synthesis has been studied since the Second World War, when it was used as blood plasma expander. This polysaccharide composed of glucose units is linked by an α-1,6-glucosidic bond. Dextransucrase is a bacterial extra cellular enzyme, which promotes the dextran synthesis from sucrose. When, besides sucrose, another substrate (acceptor) is also present in the reactor, oligosaccharides are produced and part of the glucosyl moieties from glucose is consumed to form these acceptor products, decreasing the dextran yield. Although dextran enzymatic synthesis has been extensively studied, there are few published studies regarding its molecular weight distribution. In this work, the effect of maltose on yield and dextran molecular weight synthesized using dextransucrase from Leuconostoc mesenteroides B512F, was investigated. According to the obtained results, maltose is not able to control and reduce dextran molecular weight distribution and synthesis carried out with or without maltose presented the same molecular weight distribution profile.  相似文献   

13.
14.
Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases.  相似文献   

15.
Glucosyltransferase (GTF)-I from cariogenic Streptococcus sobrinus elongates the α-(1→3)-linked glucose polymer branches on the primer dextran bound to the C-terminal glucan-binding domain. We investigated the GTF-I-catalyzed glucan synthesis reaction in the absence of the primer dextran. The time course of saccharide production during dextran-independent glucan synthesis from sucrose was analyzed. Fructose and glucose were first produced by the sucrose hydrolysis. Leucrose was subsequently produced, followed by insoluble glucan [α-(1→3)-linked glucose polymers] after a lag phase. High levels of intermediate nigerooligosaccharide series accumulation were characteristically not observed during the lag phase. The results from the enzymatic activity of the acceptor reaction for the nigerooligosaccharide with a degree of polymerization of 2-6 and methyl α-D-glucopyranoside as a glucose analog indicate that the activity increased with an increase in the degree of polymerization. The production of insoluble glucan was numerically simulated using the fourth-order Runge-Kutta method with the kinetic parameters estimated from the enzyme assay. The simulated time course provided a profile similar to that of experimental data. These results define the relationship between the kinetic properties of GTF-I and the time course of saccharide production. These results are discussed with respect to a mechanism that underlies efficient glucan synthesis.  相似文献   

16.
Cyclodextrin homologues (CDs), produced by cyclodextrin glycosyltransferase (CGTase), were simultaneously partitioned in aqueous two-phase system (ATPS). Partition coefficients of CDs were measured in PEG/salt and PEG/dextran systems. Phosphate, citrate, sulfate were tested as salt. ATPS of PEG/salt and PEG/dextran had the partition coefficients of the CDs, larger than unity. However, PEG/dextran system was observed better than PEG/salt as CGTase activity decreased sharply with salt concentration. Enzymatic reaction occurred mainly in PEG-rich bottom phase because of the low partition coefficient of CGTase. The resulting CDs transferred to the PEG-rich top phase, obeying the diffusional partition. In the ATPS of 7% PEG (M.W. 20,000) and 9% dextran (M.W. 40,000), 7 mg/ml of CDs were obtained in top phase at 4.5 hours.  相似文献   

17.
Glucose monitoring is an essential component of modern diabetes management. Three in vivo glucose sensors are now available for clinical use: a subcutaneously implanted amperometric enzyme electrode, a reverse iontophoresis system and a microdialysis-based device. Improvements in glucose-sensing technology continue to be sought, e.g. wired enzyme technology, viscometric affinity sensing and totally implanted glucose sensors. Non-invasive glucose sensing is the ultimate goal of glucose monitoring, but the most investigated approach, near-infrared (NIR) spectroscopy, is presently too imprecise for clinical application. Fluorescence-based glucose sensing offers several advantages and we are investigating strategies which include NIR-based fluorescence resonance energy transfer using concanavalin A/dextran; changes in the intrinsic fluorescence of hexokinase encapsulated in sol-gel; and non-invasive glucose monitoring of cells by measuring glucose-related changes in NADP(H).  相似文献   

18.
Leuconostoc mesenteroides B-1299 dextrans are separated into two kinds: fraction L, which is precipitated by an ethanol concentration of 38%, and fraction S, which is precipitated at an ethanol concentration of 40%. Fraction S dextran contained 35% of -1,2 branch linkages, and fraction L contained 27% -1,2 branch linkage with 1% -1,3 branch linkages. We have isolated mutants constitutive for dextransucrase from L. mesenteroides NRRL B-1299 using ethyl methane sulfonate. The mutants produced extracellular as well as cell-associated dextransucrases on glucose media with higher activities (2.5–4.5 times) than what the parental strain produced on sucrose. Based on Penicillium endo-dextranase hydrolysis, mutant B-1299C dextransucrases produced slightly different dextrans when they were elaborated on a glucose medium and on a sucrose medium. Mutant B-1299CA dextransucrase elaborated on a glucose medium and on a sucrose medium synthesized the same dextran, although the dextran was different from those of other mutants and the parental strain. Mutant B-1299CB dextransucrase, elaborated on a glucose medium and on a sucrose medium, formed different dextrans. Differences in water solubility, susceptibility to endo-dextranase hydrolysis, and the physical appearance of the ethanol precipitated dextrans elaborated by different mutants grown on glucose media and sucrose media were found. All mutant dextransucrases elaborated on a glucose medium bound to Sephadex G-200. After activity staining of nondenaturing sodium dodecyl sulfate—polyacrylamide gel electrophoresis activity bands, 184 and 240 Kd for each enzyme preparation, although each dextransucrase formed different dextran(s).  相似文献   

19.
Summary Partition and production of the extracellular chitinase from Serratia marcescens were studied in PEG/dextran aqueous two-phase systems. The enzyme partitions into the bottom phase and the cells segregate into the top phase. The best system is 2% (w/v) PEG 20000 and 5% (w/v) dextran T500. The cell growth and enzyme production kinetics are similar in the aqueous two-phase system and in the polymer-free reference system. However, the maximum enzyme concentration in the former system is 1.5 times that in the latter one.  相似文献   

20.
Phase separation in an aqueous quaternary system   总被引:1,自引:1,他引:0       下载免费PDF全文
(1) We have measured the incompatible phase separation that occurs in a polyethylene glycol-sodium dextran sulphate-sodium chloride-water system and have determined a critical point. (2) We have measured the activity coefficients of sodium chloride in critical-point concentrations of polyethylene glycol and sodium dextran sulphate respectively, and the osmotic coefficient of sodium dextran sulphate at the critical-point concentration. (3) With use of the relevant thermodynamic equations for a quaternary ionic system, we have determined the interaction coefficients between polyethylene glycol and dextran sulphate and between polyethylene glycol and sodium chloride. The former could be due mainly to volume exclusion, but the latter is too large to be explained on that basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号