首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Collision risk modelling of birds at wind turbines typically requires vantage point (VP) data to quantify bird flight activity. The number of VP observation hours required to provide such data, and the associated error in predicted collision rate, have not been formally assessed. Using the Band model and a randomization procedure, we examine the sensitivity of collision rate predictions for the White‐tailed Eagle Haliaeetus albicilla to varying hours of input data on flight activity. Variability in collision rate decreased with increasing number of observation hours. However, at the asymptote in variability (about 62 observation hours) there was still considerable variability in predicted collision rate. VP watches are likely to be inherently variable, and collision rate predictions should assess the potential error associated with such results.  相似文献   

4.
5.
6.
7.
Nocturnally migrating birds, particularly passerines, are known to be vulnerable to collision with man‐made structures such as buildings, towers or offshore platforms, yet information with respect to wind farms is ambiguous. We recorded bird flight intensities using radar during autumn migration at four wind farms situated within a major migration flyway in northern Germany and simultaneously conducted systematic searches for collision fatalities at the same sites. We found that migration traffic rates at rotor height estimated by radar observations were significantly higher during the night, yet strictly nocturnal migrants constituted only 8.6% of all fatalities at the wind farms. In contrast to the situation at other vertical structures, nocturnal migrants do not have a higher risk of collision with wind energy facilities than do diurnally active species, but rather appear to circumvent collision more effectively.  相似文献   

8.
9.
10.
Fatalities of migratory bats, many of which use low frequency (<35 kHz; LowF) echolocation calls, have become a primary environmental concern associated with wind energy development. Accordingly, strategies to improve compatibility between wind energy development and conservation of bat populations are needed. We combined results of continuous echolocation and meteorological monitoring at multiple stations to model conditions that explained presence of LowF bats at a wind energy facility in southern California. We used a site occupancy approach to model nightly LowF bat presence while accounting for variation in detection probability among echolocation detectors and heights. However, we transposed the spatial and temporal axes of the conventional detection history matrix such that occupancy represented proportion of nights, rather than monitoring points, on which LowF bats were detected. Detectors at 22 m and 52 m above ground had greater detection probabilities for LowF bats than detectors at 2 m above ground. Occupancy of LowF bats was associated with lower nightly wind speeds and higher nightly temperatures, mirroring results from other wind energy facilities. Nevertheless, we found that building separate models for each season and considering solutions with multiple covariates resulted in better fitting models. We suggest that use of multiple environmental variables to predict bat presence could improve efficiency of turbine operational mitigations (e.g., changes to cut-in speeds) over those based solely on wind speed. Increased mitigation efficiencies could lead to greater use of mitigations at wind energy facilities with benefits to bat populations. © 2011 The Wildlife Society.  相似文献   

11.
Bird and bat fatalities increase with wind energy expansion and the only effective fatality-reduction measure has been operational curtailment, which has been documented for bats but not for birds. We performed opportune before-after, control-impact (BACI) experiments of curtailment effects on bird and bat fatalities and nocturnal passage rates during fall migration at 2 wind projects, where 1 continued operating and the other shut down from peak migration to the study's end (study 1). We also performed BACI experiments during a 3-year study of curtailment and operational effects on bird fatalities among wind turbines of varying operational status (study 2). In study 1, wind turbine curtailment significantly reduced near-misses and rotor-disrupted flights of bats, and it significantly reduced fatalities of bats but not of birds. In study 2, converting wind turbines from inoperable to operable status did not significantly increase bird fatalities, and bird species of hole or sheltered-ledge nesters or roosters on human-made structures died in substantial numbers at vacant towers. Of bird species represented by fatalities in study 2, 79% were found at inoperable wind turbines. Because the migration season is relatively brief, seasonal curtailment would greatly reduce bat fatalities for a slight loss in annual energy generation, but it might not benefit many bird species. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

12.
  1. Birds colliding with turbine rotor blades is a well‐known negative consequence of wind‐power plants. However, there has been far less attention to the risk of birds colliding with the turbine towers, and how to mitigate this risk.
  2. Based on data from the Smøla wind‐power plant in Central Norway, it seems highly likely that willow ptarmigan (the only gallinaceous species found on the island) is prone to collide with turbine towers. By employing a BACI‐approach, we tested if painting the lower parts of turbine towers black would reduce the collision risk.
  3. Overall, there was a 48% reduction in the number of recorded ptarmigan carcasses per search at painted turbines relative to neighboring control (unpainted) ones, with significant variation both within and between years.
  4. Using contrast painting to the turbine towers resulted in significantly reduced number of ptarmigan carcasses found, emphasizing the effectiveness of such a relatively simple mitigation measure.
  相似文献   

13.
We studied the impact of a wind farm (line of 25 small to medium sized turbines) on birds at the eastern port breakwater in Zeebrugge, Belgium, with special attention to the nearby breeding colony of Common Tern Sterna hirundo, Sandwich Tern Sterna sandvicensis and Little Tern Sterna albifrons. With the data of found collision fatalities under the wind turbines, and the correction factors for available search area, search efficiency and scavenging, we calculated that during the breeding seasons in 2004 and 2005, about 168 resp. 161 terns collided with the wind turbines located on the eastern port breakwater close to the breeding colony, mainly Common Terns and Sandwich Terns. The mean number of terns killed in 2004 and 2005 was 6.7 per turbine per year for the whole wind farm, and 11.2 resp. 10.8 per turbine per year for the line of 14 turbines on the sea-directed breakwater close to the breeding colony. The mean number of collision fatalities when including other species (mainly gulls) in 2004 and 2005 was 20.9 resp. 19.1 per turbine per year for the whole wind farm and 34.3 resp. 27.6 per turbine per year for 14 turbines on the sea-directed breakwater. The collision probability for Common Terns crossing the line of wind turbines amounted 0.110–0.118% for flights at rotor height and 0.007–0.030% for all flights. For Sandwich Tern this probability was 0.046–0.088% for flights at rotor height and 0.005–0.006% for all flights. The breeding terns were almost not disturbed by the wind turbines, but the relative large number of tern fatalities was determined as a significant negative impact on the breeding colony at the eastern port breakwater (additional mortality of 3.0–4.4% for Common Tern, 1.8–6.7% for Little Tern and 0.6–0.7% for Sandwich Tern). We recommend that there should be precautionary avoidance of constructing wind turbines close to any important breeding colony of terns or gulls, nor should artificial breeding sites be constructed near wind turbines, especially not within the frequent foraging flight paths.  相似文献   

14.
Wind farms may have two broad potential adverse effects on birds via antagonistic processes: displacement from the vicinity of turbines (avoidance), or death through collision with rotating turbine blades. Large raptors are often shown or presumed to be vulnerable to collision and are demographically sensitive to additional mortality, as exemplified by several studies of the Golden Eagle Aquila chrysaetos. Previous findings from Scottish Eagles, however, have suggested avoidance as the primary response. Our study used data from 59 GPS-tagged Golden Eagles with 28 284 records during natal dispersal before and after turbine operation < 1 km of 569 turbines at 80 wind farms across Scotland. We tested three hypotheses using measurements of tag records’ distance from the hub of turbine locations: (1) avoidance should be evident; (2) older birds should show less avoidance (i.e. habituate to turbines); and (3) rotor diameter should have no influence (smaller diameters are correlated with a turbine’s age, in examining possible habituation). Four generalized linear mixed models (GLMMs) were constructed with intrinsic habitat preference of a turbine location using Golden Eagle Topography (GET) model, turbine operation status (before/after), bird age and rotor diameter as fixed factors. The best GLMM was subsequently verified by k-fold cross-validation and involved only GET habitat preference and presence of an operational turbine. Eagles were eight times less likely to be within a rotor diameter’s distance of a hub location after turbine operation, and modelled displacement distance was 70 m. Our first hypothesis expecting avoidance was supported. Eagles were closer to turbine locations in preferred habitat but at greater distances after turbine operation. Results on bird age (no influence to 5+ years) rejected hypothesis 2, implying no habituation. Support for hypothesis 3 (no influence of rotor diameter) also tentatively inferred no habituation, but data indicated birds went slightly closer to longer rotor blades although not to the turbine tower. We proffer that understanding why avoidance or collision in large raptors may occur can be conceptually envisaged via variation in fear of humans as the ‘super predator’ with turbines as cues to this life-threatening agent.  相似文献   

15.
To minimize the risk of colliding with the ground or other obstacles, flying animals need to control both their ground speed and ground height. This task is particularly challenging in wind, where head winds require an animal to increase its airspeed to maintain a constant ground speed and tail winds may generate negative airspeeds, rendering flight more difficult to control. In this study, we investigate how head and tail winds affect flight control in the honeybee Apis mellifera, which is known to rely on the pattern of visual motion generated across the eye—known as optic flow—to maintain constant ground speeds and heights. We find that, when provided with both longitudinal and transverse optic flow cues (in or perpendicular to the direction of flight, respectively), honeybees maintain a constant ground speed but fly lower in head winds and higher in tail winds, a response that is also observed when longitudinal optic flow cues are minimized. When the transverse component of optic flow is minimized, or when all optic flow cues are minimized, the effect of wind on ground height is abolished. We propose that the regular sidewards oscillations that the bees make as they fly may be used to extract information about the distance to the ground, independently of the longitudinal optic flow that they use for ground speed control. This computationally simple strategy could have potential uses in the development of lightweight and robust systems for guiding autonomous flying vehicles in natural environments.  相似文献   

16.
Previous studies have shown negative associations between wind energy development and breeding birds, including species of conservation concern. However, the magnitude and causes of such associations remain uncertain, pending detailed ‘before‐after‐control‐intervention’ (BACI) studies. We conducted one of the most detailed such studies to date, assessing the impacts of terrestrial wind energy development on the European Golden Plover Pluvialis apricaria, a species with enhanced protection under European environmental law. Disturbance activity during construction had no significant effect on Golden Plover breeding abundance or distribution. In contrast, once turbines were erected, Golden Plover abundance was significantly reduced within the wind farm (?79%) relative to the baseline, with no comparable changes in buffer or control areas. Golden Plovers were significantly displaced by up to 400 m from turbines during operation. Hatching and fledging success were not affected by proximity to turbine locations either during construction or operation. The marked decline in abundance within the wind farm during operation but not construction, together with the lack of evidence for changes in breeding success or habitat, strongly suggests the displacement of breeding adults through behavioural avoidance of turbines, rather than a response to disturbance alone. It is of critical importance that wind farms are appropriately sited to prevent negative wildlife impacts. We demonstrate the importance of detailed BACI designs for quantifying the impacts on birds, and recommend wider application of such studies to improve the evidence base surrounding wind farm impacts on birds.  相似文献   

17.
近年来我国风力发电发展迅速, 已有研究发现风电工程会对鸟类多样性产生不同程度的影响。然而, 过去的研究多以区域内鸟类常规调查为主, 未直接对风机致死鸟类进行长期系统的调查监测, 也未进一步探究风机致死可能的方式和原因, 从而难以根据风机致死鸟类的实际情况提出有针对性的防范措施和应对方法。本文以江苏盐城滨海地区风电场为例, 基于2020年10月至2021年9月共22次连续的调查监测, 应用尸体搜索法调查了研究区域内风机致死鸟类的情况。结果表明: (1)风机下发现的死亡鸟类有8目10科12种, 死亡鸟类主要为留鸟或已在研究区域内繁殖的种类, 占死亡鸟类种类的66.7%; (2)风机下共发现死亡鸟类41只, 环颈雉(Phasianus colchicus)死亡数量最多, 有19只, 大部分位于农田及农田防护林中; 夜鹭(Nycticorax nycticorax)和白鹭(Egretta garzetta)死亡数量也较多, 共11只, 主要位于鱼塘中; (3)通过对风机下死亡鸟类的情况分析发现, 在风机基座比风机扇叶造成的碰撞致死情况多。最后, 本文提出了减缓风机对鸟类影响的措施和建议, 包括持续开展鸟类监测, 及时开展风机下生境的治理, 加强鸟类相关驱避技术装备研发等, 为我国风电与生态环境保护之间的协调发展提供参考。  相似文献   

18.
19.
High-quality staging sites are critical for long-distance migratory shorebirds to rest and refuel but are under threat from human development, including expansion of wind energy projects. However, predicting migration timing and movements in relation to weather conditions at staging sites can increase our understanding and mitigate effects of wind turbine collisions. Here we assessed northward migration timing and orientation in relation to environmental conditions at an inland staging area in Saskatchewan, Canada, with active and proposed wind energy developments. The area is known to host ~25% of North America's Sanderling Calidris alba population and 16 other Arctic-breeding migrant shorebird species. We quantified arrival and departure time of day in relation to weather using data from 140 of 237 Sanderlings radiotagged locally and at a southern staging site in the Gulf of Mexico with the Motus Wildlife Tracking System (April–June, 2015–2017). Although Sanderling arrival times were not related to time of day or weather, departures were more likely at sunset in winds blowing towards the northwest at intermediate speeds (<22 km/h). Departure flights were also primarily oriented north-northwest in the direction of a proposed wind energy development site at a mean ground speed of 21.4 m/s. Based on published climb rates and flight speed data, we estimated that shorebirds needed between 2 and 14 km setback distance to clear maximum turbine heights of 165 m. Given that departure events were predictable in time and space, adaptive mitigation may be useful for planning wind energy developments while reducing risk for staging Arctic-breeding shorebirds.  相似文献   

20.
Unlike smaller raptors, which can readily use flapping flight, large raptors are mainly restricted to soaring flight due to energetic constraints. Soaring comprises of two main strategies: thermal and orographic soaring. These soaring strategies are driven by discrete uplift sources determined by the underlying topography and meteorological conditions in an area. High‐resolution GPS tracking of raptor flight allows the identification of these flight strategies and interpretation of the spatiotemporal occurrence of thermal and orographic soaring. In this study, we develop methods to identify soaring flight behaviors from high‐resolution GPS tracking data of Verreaux’s eagle Aquila verreauxii and analyze these data to understand the conditions that promote the use of thermal and orographic soaring. We use these findings to predict the use of soaring flight both spatially (across the landscape) and temporally (throughout the year) in two topographically contrasting regions in South Africa. We found that topography is important in determining the occurrence of soaring flight and that thermal soaring occurs in relatively flat areas which are likely to have good thermal uplift availability. The predicted use of orographic soaring was predominately determined by terrain slope. Contrary to our expectations, the topography and meteorology of eagle territories in the Sandveld promoted the use of soaring flight to a greater extent than in territories in the more mountainous Cederberg region. Spatiotemporal mapping of predicted flight behaviors can broaden our understanding of how large raptors like the Verreaux’s eagle use their habitat and how that links to energetics (as the preferential use of areas that maximize net energy gain is expected), reproductive success, and ultimately population dynamics. Understanding the fine‐scale landscape use and environmental drivers of raptor flight can also help to predict and mitigate potential detrimental effects of anthropogenic developments, such as mortality via collision with wind turbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号