首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophyllide combines spontaneously not only with phosphatidylcholine (PC) liposomes but also with various other (plant) lipids dispersed in an aqueous medium. The lipid-associated chlorophyllide is highly fluorescent and the fluorescence yield is virtually independent of the nature of the lipid. Chlorophyllase (chlorophyll chlorophyllidohydrolase, EC 3.1.1.14) activity assays that are based on the determination of this chlorophyllide fluorescence show that phosphatidylglycerol (PG), and also sulphoquinovosyldiacylglycerol (SQDG), associate with isolated chlorophyllase, thereby inactivating the enzyme in a co-operative way. The extent of this inactivation depends on the pH and ionic strength of the reaction medium and can be completely reversed by divalent cations (Mg2+). The inhibition of chlorophyllase effected by free PG liposomes can be counteracted by electrically neutral lipids at relatively high concentration (PC and also chloroplast lipids). Digalactosyldiacylglycerol (DGDG) is not effective in this respect. When PG has been incorporated in PC or DGDG liposomes, its ability to inhibit chlorophyllase activity is reduced. Whereas the remaining chlorophyllase-inactivating effect of PG, incorporated in PC, can still be reversed by Mg2+, this is not found when enzyme inactivation is caused by PG incorporated in DGDG. The results reported here are consistent with those obtained earlier concerning the stabilization of chlorophyllase by PG and PG/galactolipid mixtures (Lambers, J.W.J., Verkleij, A.J. and Terpstra, W. (1984) Biochim. Biophys. Acta 786, 1-8). They are discussed in terms of the regulation of chlorophyllase activity by lipids surrounding the enzyme and by divalent cations.  相似文献   

2.
3.
The interaction of the antitumor compound adriamycin with human erythrocyte membranes, used as models of target cell membranes, has been studied using circular dichroism measurements. In order to elucidate the nature of the sites involved in the electrostatic interaction between adriamycin and erythrocyte membranes, its interaction with the following macromolecular systems was studied: phosphatidylserine-containing small unilamellar vesicles (SUV), prepared from total lipid extracts of erythrocytes, sialic acid-depleted erythrocyte ghosts and mucopolysaccharides. We have shown that the interaction between adriamycin and carboxylate groups is very weak and that negatively charged phosphate groups, in the case of membranes, or sulfate groups, in the case of mucopolysaccharides, are responsible for the prime interaction of adriamycin with these macromolecular systems.  相似文献   

4.
A Seelig  P M Macdonald 《Biochemistry》1989,28(6):2490-2496
The binding of substance P (SP), a positively charged neurotransmitter peptide, to neutral and to negatively charged phospholipids has been investigated by means of a monolayer technique. Monolayers formed at room temperature from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), or mixtures of the two, were maintained throughout the course of a binding experiment at a constant surface pressure while the monolayer surface area was monitored. Injection of SP into the aqueous subphase (154 mM NaCl, 10 mM Tris adjusted to pH 7.4) led to an expansion of the monolayer surface area that was attributed to a spontaneous insertion of SP between the lipid molecules. A quantitative evaluation of the area increase at constant pressure yielded SP insertion isotherms that showed that levels of SP insertion increased directly with the monolayer POPG content and decreased to negligible levels at surface pressures above 35 +/- 1 mN/m. If electrostatic effects were ignored, these data showed biphasic behavior in Scatchard plots. The apparent binding constants ranged, at 20 mN/m, from (3.2 +/- 0.3) X 10(4) M-1 for 100% POPG monolayers to (2.0 +/- 0.05) X 10(3) M-1 for 25% POPG/75% POPC monolayers. At 32 mN/m, a monolayer surface pressure that mimics bilayer conditions, the apparent binding constant for a 100% POPG monolayer was measured to be (1.1 +/- 0.05) X 10(3) M-1. However, for a monolayer containing only 25% charged lipids, corresponding to a natural membrane composition, K app at 32 mN/m was estimated to be at most 41 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of cytochrome c on the kinetic properties of ion channels formed by O-pyromellitylgramicidin (OPg), the negatively charged analogue of gramicidin A (gA), in bilayer lipid membranes was studied by the method of sensitized photoinactivation. The addition of cytochrome c to both sides of the membrane caused substantial deceleration of the photoinactivation kinetics of OPg channels which expose three negative charges to the aqueous phase at both sides of the membrane. By contrast, the gA photoinactivation kinetics was unaltered by the addition of cytochrome c. Based on the sensitivity of the observed effect to the ionic strength of the bathing solution, the cytochrome c-induced deceleration of the OPg photoinactivation kinetics reflecting the increase in the OPg channel lifetime was ascribed to electrostatic interaction of positive charges of cytochrome c with negative charges of OPg that resulted in channel clustering. Formation of clusters of OPg channels was previously inferred to explain the polylysine effect on the OPg channel kinetics. The decelerating effect of cytochrome c on OPg channels was observed only at a high number of OPg channels in the membrane, thus suggesting that the interaction between cytochrome c and the charged transmembrane protein requires sufficiently high negative charge density on the surface of the membrane.  相似文献   

6.
Hjelm R  Schedin-Weiss S 《Biochemistry》2007,46(11):3378-3384
Idraparinux is a synthetic O-sulfated, O-methylated pentasaccharide that binds tightly to antithrombin (AT) and thereby specifically and efficiently induces the inactivation of the procoagulant protease, factor Xa. In this study, the affinity and kinetics of the interaction of this high-affinity pentasaccharide with alpha- and beta-AT were compared with those of a synthetic pentasaccharide comprising the natural AT-binding sequence of heparin. Dissociation equilibrium constants, Kd, for the interactions of Idraparinux with alpha- and beta-AT were approximately 0.4 and 0.1 nM, respectively, corresponding to an over 100-fold enhancement in affinity compared with that of the normal pentasaccharide. This large enhancement was due to a approximately 400-fold tighter conformationally activated complex formed in the second binding step, whereas the encounter complex established in the first step was approximately 4-fold weaker. The high-affinity and normal pentasaccharides both made a total of four ionic interactions with AT, although the high-affinity saccharide only established one ionic interaction in the first binding step and was compensated by three in the second step, whereas the normal pentasaccharide established two ionic interactions in each step. In contrast, the affinities of the nonionic interactions (Kd approximately 450 and 90 nM for the binding to alpha- and beta-AT, respectively) were considerably higher than those for the normal pentasaccharide and the highest of all AT-saccharide interactions reported so far. The nonionic contribution to the total free energy of the high-affinity pentasaccharide binding to AT thus amounted to approximately 70%. These findings show that nonionic interactions can play a predominant role in the binding of highly charged saccharide ligands to proteins and can be successfully exploited in the design of such biologically active ligands.  相似文献   

7.
Lysosomal phospholipase A2 (LPLA2) is characterized by increased activity toward zwitterionic phospholipid liposomes containing negatively charged lipids under acidic conditions. The effect of anionic lipids on LPLA2 activity was investigated. Mouse LPLA2 activity was assayed as C2-ceramide transacylation. Sulfatide incorporated into liposomes enhanced LPLA2 activity under acidic conditions and was weakened by NaCl or increased pH. Amiodarone, a cationic amphiphilic drug, reduced LPLA2 activity. LPLA2 exhibited esterase activity when p-nitro-phenylbutyrate (pNPB) was used as a substrate. Unlike the phospholipase A2 activity, the esterase activity was detected over wide pH range and not inhibited by NaCl or amiodarone. Presteady-state kinetics using pNPB were consistent with the formation of an acyl-enzyme intermediate. C2-ceramide was an acceptor for the acyl group of the acyl-enzyme but was not available as the acyl group acceptor when dispersed in liposomes containing amiodarone. Cosedimentation of LPLA2 with liposomes was enhanced in the presence of sulfatide and was reduced by raising NaCl, amiodarone, or pH in the reaction mixture. LPLA2 adsorption to negatively charged lipid membrane surfaces through an electrostatic attraction, therefore, enhances LPLA2 enzyme activity toward insoluble substrates. Thus, anionic lipids present within lipid membranes enhance the rate of phospholipid hydrolysis by LPLA2 at lipid-water interfaces.—Abe, A., and J. A. Shayman. The role of negatively charged lipids in lysosomal phospholipase A2 function.  相似文献   

8.
Ingestion of liposomes opsonized by specific antibody plus complement was investigated in vitro. Although the antibodies alone (IgM) did not have an opsonizing effect, in the presence of such antibodies uptake and ingestion of liposomes by mouse peritoneal macrophages was enhanced 5- to 10-fold by addition of complement. Phagocytosis of complement-opsonized liposomes was strongly dependent on the charge of the liposomal lipids. The presence of a negatively charged (i.e., acidic) lipid profoundly suppressed the uptake of the liposomes. Each of three acidic liposomal lipids, phosphatidylserine, phosphatidylinositol and dicetyl phosphate, suppressed liposome uptake. We conclude that opsonization of liposomes with complement greatly stimulates ingestion of liposomes by murine macrophages. However, most of the opsonic enhancement conferred by complement can be prevented by the presence of negatively charged membrane lipids.  相似文献   

9.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

10.
To determine the causes responsible for a preferential decrease of paraoxonase activity, which has been observed in the serum of patients with cardiovascular diseases, the inactivation or inhibition of paraoxonase 1 (PON1) by various endogenous factors was examined using paraoxon or phenyl acetate as a substrate. When purified PON1 was incubated with various endogenous oxidants or aldehydes, they failed to cause a preferential reduction of paraoxonase activity, suggesting no participation of the inactivation mechanism in the preferential loss of paraoxonase activity. Next, when we examined the inhibition of PON1 activity by endogenous lipids, monoenoic acids such as palmitoleic acid or oleic acid inhibited paraoxonase activity preferentially, in contrast to a parallel inhibition of both activities by polyunsaturated or saturated acids. Noteworthy, oleoylglycine inhibited paraoxonase activity, but not arylesterase activity, complying with the selective inhibition of paraoxonase activity. Moreover, such a selective inhibition of paraoxonase activity was also expressed by lysophosphatidylglycerol or lysophosphatidylinositol, but not by lysophosphatidylserine or lysophosphatidylcholine, indicating the importance of the type of head group. Furthermore, such a preferential or selective inhibition of paraoxonase activity was also observed with PON1 associated with HDL or plasma. These data suggest that some negatively charged lipids may correspond to factors causing the preferential inhibition of paraoxonase activity of PON1.  相似文献   

11.
12.
The interaction of lipid vesicles with uncoated vesicles from bovine brain has been studied by fluorescence energy transfer between fluorescent lipid analogs (NBD-PE, Rh-DOPE), by loss of fluorescence self-quenching (NBD-PE, carboxyfluorescein) and by freeze-fracture electron microscopy. The fluorescence techniques monitor the mixing of membranous lipids and the induced release of encapsulated material. The results demonstrate a mixing of the negatively charged lipid (PA, PS) vesicles with the uncoated vesicles. In parallel with the lipid mixing a release of intravesicularly encapsulated material takes place. Lipid vesicles composed of zwitterionic lipids (PC, DOPC, PC:PE) do not specifically interact with uncoated vesicles. The electron micrographs reveal single fusion events. Studies on the kinetics are consistent with a fusional mechanism of the negatively charged lipid vesicles with uncoated vesicles.  相似文献   

13.
Fusidic acid (FA), a narrow spectrum steroidal antibiotic, is useful for treatment of most skin, conjunctival, and corneal infections and also in infections caused by atypical microbes in the surface of the eye. Liposome electrokinetic capillary chromatography (LEKC) was used to study the interactions between FA and lipid membranes. Liposomes prepared by extrusion were composed of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl-sn-glysero-3-phosphor-l-serine (POPS), cholesterol, FA, and sphingomyelin (SM) in various molar ratios. 26 different liposome dispersions were studied as dispersed (pseudostationary) phase in LEKC. The hydrophobicities of the liposomes were evaluated by calculating the retention factors of model neutral steroids. The retention factors were calculated using the EOF and the effective electrophoretic mobilities of the analytes and the liposomes. The latter were separately determined by capillary electrophoresis with a polyacrylamide (PAA)-coated capillary. FA-lipid membrane interactions were studied by determining the retention factor of FA. In addition, liposomes prepared from lipids extracted from Escherichia coli bacterium were studied and used as dispersed phase in LEKC for interaction studies between FA and lipid membranes.  相似文献   

14.
An overview is provided on the possibilities of producing positively and negatively charged poly(β-hydroxyalkanoates), PHAs. A large variety of bacterial polyesters with functionalized terminal side chains can be produced in microbial fermentation processes by a direct polymerization of respective carbon sources, that is, carbon sources that carry functional groups in their ω-position. However, charged PHAs are not accessible by a direct approach and must be synthesized via polymer-analogous reactions of functionalized bacterial polyesters. PHA polyanions are produced by converting the terminal functional groups into carboxylate groups, while PHA polycations are produced by introducing terminal amino groups. PHAs with terminal vinyl groups emerged as most suitable PHA precursors, as they can be produced in relatively high yields and the double bonds are sufficiently reactive. The oxidation of vinyl groups yields PHA polyanions. The conversion of terminal vinyl groups into epoxides with a subsequent ring-opening reaction with an amine yields PHA polycations. Other functionalized PHA that potentially lend themselves to polymer-analogous reactions are reviewed.  相似文献   

15.
The complex formation between the basic protein lysozyme and anionic polyelectrolytes: poly acrylic acid and poly vinyl sulfonic acid was studied by turbidimetric and isothermal calorimetric titrations. The thermodynamic stability of the protein in the presence of these polymers was also studied by differential scanning calorimetry. The lysozyme-polymer complex was insoluble at pH lower than 6, with a stoichiometric ratio (polymer per protein mol) of 0.025-0.060 for lysozyme-poly vinyl sulfonic acid and around 0.003-0.001 for the lysozyme-poly acrylic acid. NaCl 0.1M inhibited the complex precipitation in agreement with the proposed coulombic mechanism of complex formation. Enthalpic and entropic changes associated to the complex formation showed highly negative values in accordance with a coulombic interaction mechanism. The protein tertiary structure and its thermodynamic stability were not affected by the presence of polyelectrolyte.  相似文献   

16.
In the present study, we have analyzed a previously identified constitutively active pituitary adenylate cyclase activating polypeptide (PACAP) type I (PAC1) receptor with a deletion of the single amino acid residue Glu(261) (Y.-J. Cao, G. Gimpl, F. Fahrenholz, A mutation of second intracellular loop of pituitary adenylate cyclase activating polypeptide type I receptor confers constitutive receptor activation, FEBS Lett. 469 (2000)). This glutamic acid residue is highly conserved within the second intracellular loop of class II G protein-coupled receptors and may thus be of importance for many members of this receptor class. To explore the molecular characteristics of this mutant receptor, we performed photoaffinity labeling using previously defined photoreactive PACAP analogues. In COS cells, the PAC1 receptor was expressed in two differently glycosylated forms: a M(r) 75,000 and a M(r) 55,000 form. According to partial deglycosylation, at least three carbohydrate chains may exist in the rat PAC1 receptor expressed in COS cells. The constitutively active PAC1 receptor was expressed at the surface of COS-7 cells at the same density as the wild-type receptor. With respect to the different photoreactive PACAP analogues, the labeling specificity was the same for the wild-type versus mutant receptor: (125)I-[Lys(15)(pBz(2))]-PACAP-27 and (125)I-[Bpa(22)]-PACAP-27 were efficiently incorporated into each of the receptors, whereas (125)I-[Bpa(6)]-PACAP-27 labeled each of the receptors only to a negligible extent. This suggests that both receptors have the same or at least a very similar hormone binding site which is in close contact to Tyr(22) and Lys(15) located in the carboxy-terminal alpha-helical region of the PACAP-27 molecule. However, in comparison with the wild-type PAC1 receptor, the constitutively active receptor showed a markedly (approx. 6--8-fold) enhanced photoaffinity labeling efficiency in particular of the high glycosylated form. The enzymatically deglycosylated rat PAC1 receptor was efficiently labeled by photoreactive PACAP analogues. In contrast, nonglycosylated PAC1 receptors produced by tunicamycin treatment of the transfected COS-7 cells showed a 30-fold lower affinity for PACAP-27 and were capable of signal transduction with 30--50-fold lower potency as compared with the glycosylated PAC1 receptors.  相似文献   

17.
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely ornithine (Orn), α,γ-diaminobutyric acid (Dab) and α, β-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.  相似文献   

18.
The effects of negatively charged and neutral lipids on the function of the reconstituted nicotinic acetylcholine receptor from Torpedo californica were determined with two assays using acetylcholine receptor-containing vesicles: the ion flux response and the affinity-state transition. The receptor was reconstituted into three different lipid environments, with and without neutral lipids: (1) phosphatidylcholine/phosphatidylserine; (2) phosphatidylcholine/phosphatidic acid; and (3) phosphatidylcholine/cardiolipin. Analysis of the ion flux responses showed that: (1) all three negatively charged lipid environments gave fully functional acetylcholine receptor ion channels, provided neutral lipids were added; (2) in each lipid environment, the neutral lipids tested were functionally equivalent to cholesterol; and (3) the rate of receptor desensitization depends upon the type of neutral lipid and negatively charged phospholipid reconstituted with the receptor. The functional effects of neutral and negatively charged lipids on the acetylcholine receptor are discussed in terms of protein-lipid interactions and stabilization of protein structure by lipids.  相似文献   

19.
Polynucleotide adsorption to negatively charged surfaces via divalent ions is extensively used in the study of biological systems. We analyze here the adsorption mechanism via a self-consistent mean-field model that includes the pH effect on the surface-charge density and the interactions between divalent ions and surface groups. The adsorption is driven by the cooperative effect of divalent metal ion condensation along polynucleotides and their reaction with the surface groups. Although the apparent reaction constants are enhanced by the presence of polynucleotides, the difference between reaction constants of different divalent ions at the ideal condition explains why not all divalent cations mediate DNA adsorption onto anionic surfaces. Calculated divalent salt concentration and pH value variations on polynucleotide adsorption are consistent with atomic force microscope results. Here we use long-period x-ray standing waves to study the adsorption of mercurated-polyuridylic acid in a ZnCl2 aqueous solution onto a negatively charged hydroxyl-terminated silica surface. These in situ x-ray measurements, which simultaneously reveal the Hg and Zn distribution profiles along the surface normal direction, are in good agreement with our model. The model also provides the effects of polyelectrolyte line-charge density and monovalent salt on adsorption.  相似文献   

20.
Phosphatidylglycolaldehyde and its lyso derivative were applied as probes in order to study lipid-protein interactions with purified, membrane-bound Na,K-ATPase. Reduction with [3H]NaCNBH3 led to formation of a stable chemical derivative between added lipid and protein. The extent of modification of the two subunits of Na,K-ATPase was similar. Extensive tryptic digestion of derivatized ATPase resulted in cleavage of the alpha-subunit without hydrolysis of the beta-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号