首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— GABA, taurine and β-alanine are taken up by guinea-pig cerebellar slices by both the high-and low-affinity uptake processes, whereas glycine is taken up only by the low-affinity process. A considerable amount of labelled GABA loaded in the slice is released by unlabelled external GABA and a minute amount is released by external β-alanine, glycine and taurine. External glycine and β-alanine releases labelled glycine loaded in the slice. Labelled taurine loaded is effectively released by external taurine and β-alanine, while labelled β-alanine loaded is released only by external β-alanine.
It is suggested that hetero-exchanges which are one-directional in some cases also take place between the amino acids in addition to homo-exchanges. Therefore, high-affinity uptake processes observed with GABA and taurine could be the result of the homo-exchange diffusions, while that of β-alanine could be due to either the homo-exchange or the hetero-exchange diffusions or both.
K+'-evoked releases of GABA and to a lesser extent, taurine are partially dependent upon the presence of Ca+ in the superfusion media, whereas that of glycine and probably that of β-alanine, are not, K+ -evoked releases of labelled GABA and taurine are larger when loaded by their high-affinity uptake systems than by their low-affinity uptake processes. The reverse is the case with labelled glycine and β-alanine. These results do not rule out the possibility that taurine might act as a neurotransmitter in the cerebellum.  相似文献   

2.
Abstract— At 25°C the accumulation of [3H] dl -2,4-diaminobutyric acid (DABA) into small rat cortical slices was linear with time and a tissue: medium ratio of 35:1 was attained after 60 min. At 37°C the uptake was no longer linear and the tissue: medium ratio at 60 min was 66:1. Uptake was unaffected by the addition of 10 μ m -AOAA and dependent on the presence of Na+ in the incubation media. The uptake was shown to have a high affinity component with a K m of 20.7 μ m and a V max of 28.6 nmol/g/min. IC50's for the inhibition of [3H]DABA uptake by dl -DABA, l -DABA and GABA were 80, 40 and 17 μ m respectively. Two m m β -alanine, however, caused less than 13% inhibition of [3H]DABA uptake. Electron microscopic autoradiographs showed the [3H]DABA to be accumulated by 22% of the identifiable nerve terminals and, after 14 days exposure, the density of silver grains over nerve terminals was 36–38 times higher than that over the rest of the electron micrograph. On the other hand, [3H]DABA was not taken up into rat sensory ganglia and light level autoradiography showed the small amount of [3H]DABA accumulated by the ganglia to be evenly distributed throughout the tissue. Both electrical stimulation for 30 s and exposure of the tissue to a medium containing 47 m m -K+ for 2 min caused a marked increase in the efflux of [3H]DABA from the tissue. Both these effects were abolished by a reduction in Ca2+ concentration and an increase in the Mg2+ concentration of the superfusing medium. These results suggest that l -DABA acts as a 'false transmitter' for the neuronal uptake, storage and release of GABA.  相似文献   

3.
Abstract: Uptake and release of cysteine sulfinic acid by synaptosomal fractions (P2) and slices of rat cerebral cortex were investigated. The P2 fraction had a Na+-dependent high-affinity uptake system for cysteine sulfinic acid (Km, 12μM), which was restricted to the synaptosomes. High-affinity uptake of cysteine sulfinic acid was competitively inhibited by glutamate, aspartate, and cysteic acid. None of the various centrally acting drugs tested specifically inhibited this transport system. Release of [14C]cysteine sulfinic acid from preloaded cortical slices or P2 fractions was examined by a superfusion method, which avoided reuptake of released [14C]cysteine sulfinic acid. High K+ (56 m M ) and veratridine (10μM) stimulated the release of cysteine sulfinic acid from slices and the P2 fraction in a partly Ca2+-dependent manner. Diazepam at concentrations of 10 and 100 μM markedly inhibited the stimulated release, but not the spontaneous release, by cortical slices. On the contrary, it had no effect on the stimulated release of cysteine sulfinic acid from the P2 fraction.  相似文献   

4.
Abstract: Accumulation of L-α-aminoadipate by rat cerebral cortical slices is a stereospecific and Na+-dependent process. The uptake of this compound is also temperature-dependent, with a Km , of 1.6 × 10−4M for the high-affinity system. D-α-Aminoadipate has characteristics similar to those displayed by the L-isomer but to a lesser degree. L-Glutamate and L-aspartate inhibit the uptake of L-α-aminoadipate. D- and L-α-Aminoadipate are, respectively, weak uncompetitive and weak competitive inhibitors for the uptake of L-glutamate and L-aspartate. Both enantiomers inhibit GABA uptake but in quite different ways. The release of L-α-aminoadipate from the cerebral cortical slices is stimulated by a high concentration of K+ ions in the presence of Ca2+ in the perfusion buffer; the D-isomer displays this property to a lesser degree. The omission of Ca2+ markedly reduces the release of these two compounds. Less than 10% of the preloaded D- and L-α-aminoadipate are metabolized by the cerebral cortex during 40 min of superfusion. The possibility of L-α-aminoadipate as a neurotransmitter candidate is discussed.  相似文献   

5.
It has been proposed that the major portion of [3H]GABA released from rat cortical slices upon exposure to high K+ comes from a neuronal pool. Using carrier mediated exchange diffusion of DABA or β-alanine in the superfusion medium for GABA in the slice as a technique for manipulating neuronal and glial pools of GABA, it was found that DABA but not β-alanine substantially reduced the K+ stimulated release of [3H]GABA. The present study using synaptosomes as an in vitro model of the nerve ending was undertaken to ascertain whether this neuronal pool of releasable [3H]GABA was associated with a specific transmitter pool in nerve endings. A continuous superfusion system employing a Ca2+ pulse to produce a calcium coupled release (Levy et al, 1973) was used to study the effect of two concentrations (20 μm , 1 mm ) of DABA and β-alanine on the release of [3H]GABA from synaptosomes. In contrast to the results in slices, DABA at both concentrations had no effect on the release of [3H]GABA from synaptosomes in spite of evidence that exchange diffusion was occurring. With protoveratrine as the releasing agent there was no effect of DABA on the release of [3H]GABA from either slices or synaptosomes. The results suggest that the major portion of [3H]GABA released from cortical slices by high K+ comes from a non-transmitter pool in the neuron. Use of K+ stimulated release of amino acids from cortical slices as a criterion for neurotransmitter function must be viewed with caution.  相似文献   

6.
Abstract— The effect of L-2,4 diaminobutyric acid (DABA) and β-alanine on the K+ stimulated release of [3H]GABA was examined using a continuous superfusion system in which a carrier mediated exchange diffusion could be demonstrated between [3H]GABA in preloaded rat cortical slices and unlabeled DABA and β-alanine in the superfusion medium. These structurally related amino acids were chosen to investigate the source of releasable [3H]GABA because of evidence suggesting they may have differing affinities for the GABA carrier transport system that are specific for neurons and glia, DABA having a greater affinity for the neuronal GABA system and β-alanine for the glial. Five millimolars-DABA in the superfusion medium nearly abolished the K+ stimulated release of [3H]GABA whereas β-alanine had little effect. The results and conclusions are discussed in terms of a postulated carrier mediated exchange of unlabeled DABA with a specific neuronal pool of [3H]GABA interfering with the K+ stimulated release of the radiolabeled GABA. The results provide indirect evidence in favor of a neuronal pool as the source of releasable [3H]GABA in this system.  相似文献   

7.
Abstract: Following incubation with [14C]y-aminobutyric acid (GABA) or [3H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14C]GABA, the K+-induced release being largely Ca2+-dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+-dependent release of [3H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent.  相似文献   

8.
Abstract— To establish compartments involved in depolarization-induced release of γ-aminobutyric acid (GABA) in rat brain slices, the amount of exogenous labeled and endogenous GABA released and retained was followed during 48 min exposure to 50 m m -K+ or to 50 μ m -veratridine. Endogenous GABA was measured with high performance liquid chromatography. The presence of 10 μ m -aminooxyacetic acid throughout prevented both the metabolism of GABA and the formation of endogenous GABA due to depolarization. During super-fusion with 50 m m -K+ and 2.6 m m -Ca2+ the efflux of labeled and endogenous GABA after an initial large increase declined to 10% of the highest value with constant and identical rates. Kinetic analysis of efflux showed that 10% of endogenous and 25% of labeled GABA present is available for release by high K+ and Ca2+. In the absence of Ca2+, release by high K+ of both labeled and endogenous GABA was nearly suppressed. Veratridine, unlike high K+, caused an efflux which declined with an initial fast and late very slow phase. The slow efflux by veratridine was doubled in the absence of Ca2+. Exposure to veratridine in the absence of Ca2+ during 120 min released nearly 70% of labeled and endogenous GABA present. Results suggest that only about 0.25 μmol g−1 endogenous GABA is the source of physiological Ca2+-dependent release, while much of the remaining GABA present is released only under unphysiological conditions.  相似文献   

9.
UPTAKE AND RELEASE OF TAURINE FROM RAT BRAIN SLICES   总被引:13,自引:8,他引:5  
Abstract— Rapid efflux of [35S]taurine from rat brain slices was observed on electrical stimulation. Slower release resulted when the Ca2+ content of the perfusion medium was replaced with Mg2+. Uptake of [35S]taurine into rat cortical slices was unaffected by GABA, glutamic acid, glycine and leucine but was inhibited by alanine, ouabain, KCN and 2,4-dinitrophenol. Of a number of analogues of taurine, 2-aminoethylsulphinic acid was the most potent in inhibiting the uptake of [35S]taurine. The rate of uptake was found to be decreased by lowering the incubation temperature. The possibility that taurine may be a neurotransmitter is discussed.  相似文献   

10.
Abstract: The role of protein kinase C (PKC) in modulating the release of the octapeptide cholecystokinin (CCK-8) was investigated in rat hippocampal nerve terminals (synaptosomes). The PKC-activating phorbol ester 4β-phorbol 12,13-dibutyrate (β-PDBu) dose dependently (5–5,000 n M ) increased CCK-8 release in a strictly Ca2+-dependent way. This effect was observed only when synaptosomes were stimulated with the K+A channel blocker 4-aminopyridine (4-AP; 1 m M ) but not with KCI (10–30 m M ). The PDBu-induced exocytosis of CCK-8 was completely blocked by the two selective PKC inhibitors chelerythrine and calphostin-C and was not mimicked by α-PDBu, an inactive phorbol ester. In addition, an analogue of the endogenous PKC activator diacylglycerol, oleoylacetylglycerol, dose dependently increased CCK-8 exocytosis. β-PDBu (50–100 n M ) also stimulated the 4-AP-evoked Ca2+-dependent release of the classic transmitter GABA, which co-localizes with CCK-8 in hippocampal interneurons. As a possible physiological trigger for PKC activation, the role of the metabotropic glutamate receptor was investigated. However, the broad receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid did not stimulate, but instead inhibited, both the CCK-8 and the GABA exocytosis. In conclusion, presynaptic PKC may stimulate exocytosis of distinct types of colocalizing neurotransmitters via modulation of presynaptic K+ channels in rat hippocampus.  相似文献   

11.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

12.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

13.
The role of l -aspartate as a classical neurotransmitter of the CNS has been a matter of great debate. In this study, we have characterized the main mechanisms of its depolarization-induced release from rat purified cerebrocortical synaptosomes in superfusion and compared them with those of the well-known excitatory neurotransmitter l -glutamate. High KCl and 4-aminopyridine were used as depolarizing agents. At 15 mM KCl, the overflows of both transmitters were almost completely dependent on external Ca2+. At 35 and 50 mM KCl, the overflows of l -aspartate, but not those of l -glutamate, became sensitive to dl -threo-β-benzyloxyaspartic acid ( dl -TBOA), an excitatory amino acid transporter inhibitor. In the presence of dl -TBOA, the 50 mM KCl-evoked release of l -aspartate was still largely external Ca2+-dependent. The dl -TBOA insensitive, external Ca2+-independent component of the 50 mM KCl-evoked overflows of l -aspartate and l -glutamate was significantly decreased by the mitochondrial Na+/Ca2+ exchanger blocker CGP 37157. The Ca2+-dependent, KCl-evoked overflows of l -aspartate and l -glutamate were diminished by botulinum neurotoxin C, although to a significantly different extent. The 4-aminopyridine-induced l -aspartate and l -glutamate release was completely external Ca2+-dependent and never affected by dl -TBOA. Superimposable results have been obtained by pre-labeling synaptosomes with [3H] d -aspartate and [3H] l -glutamate. Therefore, our data showing that l -aspartate is released from nerve terminals by calcium-dependent, exocytotic mechanisms support the neurotransmitter role of this amino acid.  相似文献   

14.
Abstract Ca2+-dependent K+-stimulated γ-aminobutyric acid release from rat hippocampal slices was reduced about 30% by pre-incubation of the slices with 104 mouse LD50/ml tetanus toxin for 3 h at 37°C.  相似文献   

15.
Control of Noradrenaline Release from Hippocampal Synaptosomes   总被引:1,自引:0,他引:1  
Abstract Potassium-evoked tritiated noradrenaline (NA) release from hippocampal synaptosomes was measured with a superfusion method. A single 2-min high-K+ pulse released 39% of the vesicular NA by a Ca2+-dependent mechanism; the Ca2+-independent release was negligible. After changing the vesicular NA store size by pretreating rats with either α-methyl-para-tyrosine, 500 mg/kg, or tranylcypromine, 10 mg/kg, a single K+ pulse released a constant percentage of the vesicular NA. With two K+ pulses, however, there was a reduction in the percentage of vesicular N A released in response to the second pulse.  相似文献   

16.
Abstract: Histamine is a known chromaffin cell secretagogue that induces Ca2+-dependent release of catecholamines. However, conflicting evidence exists as to the source of Ca2+ utilized in histamine-evoked secretion. Here we report that histamine-H1 receptor activation induces redistribution of scinderin, a Ca2+-dependent F-actin severing protein, cortical F-actin disassembly, and catecholamine release. Histamine evoked similar patterns of distribution of scinderin and filamentous actin. The rapid responses to histamine occurred in the absence of extracellular Ca2+ and were triggered by release of Ca2+ from intracellular stores. The trigger for the release of Ca2+ was inositol 1,4,5-trisphosphate because U-73122, a phospholipase C inhibitor, but not its inactive isomer (U-73343), inhibited the increases in IP3 and intracellular Ca2+ levels, scinderin redistribution, cortical F-actin disassembly, and catecholamine release in response to histamine. Thapsigargin, an agent known to mobilize intracellular Ca2+, blocked the rise in intracellular Ca2+ concentration, scinderin redistribution, F-actin disassembly, and catecholamine secretion in response to histamine. Calphostin C and chelerythrine, two inhibitors of protein kinase C, blocked all responses to histamine with the exception of the release of Ca2+ from intracellular stores. This suggests that protein kinase C is involved in histamine-induced responses. The results also show that in the absence of F-actin disassembly, rises in intracellular Ca2+ concentration are not by themselves capable of triggering catecholamine release.  相似文献   

17.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

18.
Abstract: The aim of this study was to elucidate the mechanisms by which retinal cells release endogenous amino acids in response to ascorbate/Fe2+-induced oxidative stress, as compared with chemical hypoxia or ischemia. In the absence of stimulation, oxidative stress increased the release of aspartate, glutamate, taurine, and GABA only when Ca2+ was present. Under hypoxia or ischemia, the release of aspartate, glutamate, glycine, alanine, taurine, and GABA increased mainly by a Ca2+-independent mechanism. The increased release observed in N -methyl- d -glucamine+ medium suggested the reversal of the Na+-dependent amino acid transporters. Upon oxidative stress, the release of aspartate, glutamate, and GABA, occurring through the reversal of the Na+-dependent transporters, was reduced by about 30%, although the release of taurine was enhanced. An increased release of [3H]arachidonic acid and free radicals seems to affect the Na+-dependent transporters for glutamate and GABA in oxidized cells. All cell treatments increased [Ca2+]i (1.5 to twofold), although no differences were observed in membrane depolarization. The energy charge of cells submitted to hypoxia or oxidative stress was not changed. However, ischemia highly potentiated the reduction of the energy charge, as compared with hypoglycemia or hypoxia alone. The present work is important for understanding the mechanisms of amino acid release that occur in vivo upon oxidative stress, hypoxia, or ischemia, frequently associated with the impairment of energy metabolism.  相似文献   

19.
Abstract: The characteristics of β-alanine transport at the blood-brain barrier were studied by using primary cultured bovine brain capillary endothelial cells. Kinetic analysis of the β-[3H]alanine transport indicated that the transporter for β-alanine functions with Kt of 25.3 ± 2.5 µ M and J max of 6.90 ± 0.48 nmol/30 min/mg of protein in the brain capillary endothelial cells. β-[3H]Alanine uptake is mediated by an active transporter, because metabolic inhibitors (2,4-dinitrophenol and NaN3) and low temperature reduced the uptake significantly. Furthermore, the uptake of β-[3H]alanine required Na+ and Cl in the external medium. Stoichiometric analysis of the transport demonstrated that two sodium ions and one chloride ion are associated with one β-alanine molecule. The Na+ and Cl-dependent uptake of β-[3H]alanine was stimulated by a valinomycin-induced inside-negative K+-diffusion potential. β-Amino acids (β-alanine, taurine, and hypotaurine) inhibited strongly the uptake of β-[3H]alanine, whereas α- and γ-amino acids had little or no inhibitory effect. In ATP-depleted cells, the uptake of β-[3H]alanine was stimulated by preloading of β-alanine or taurine but not l -leucine. These results show that β-alanine is taken up by brain capillary endothelial cells, via the secondary active transport mechanism that is common to β-amino acids.  相似文献   

20.
RELEASE AND EXCHANGE STUDIES RELATING TO THE SYNAPTOSOMAL UPTAKE OF GABA   总被引:19,自引:15,他引:4  
Abstract— Synaptosomal release and exchange of [3H]GABA were studied by a superfusion technique which minimizes reuptake. The release of [3H]GABA was increased by depolarizing concentrations of KCl and showed calcium-dependence. Superfusion with 1-1000 μ m unlabelled GABA caused a dose dependent, saturable increase in the release of radioactivity by homoexchange. The exchange process showed high substrate specificity: among the various amino acids and putative neurotransmitters tested, only γ-amino-β-hydroxybutyric acid was a good stimulator of [3H]GABA release. Superfusion with sodium-free medium (NaCl replaced by sucrose) virtually abolished homoexchange. Ouabain also increased the release of [3H]GABA, and its action was additive to that of unlabelled GABA.
The presence of exchange at concentrations that are in the range of the high affinity uptake system, the apparent similarity between calculated rates of exchange and initial uptake rates, the non-detectability of exchange in a condition (Na+ deprivation) which inhibits high affinity uptake, and the lack of decrease of actual GABA concentration in incubation media used for uptake experiments, all suggest that homoexchange accounts for a substantial part of the synaptosomal accumulation of [3H]GABA generally interpreted as high affinity uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号