共查询到20条相似文献,搜索用时 15 毫秒
1.
Sukkar MB Issa R Xie S Oltmanns U Newton R Chung KF 《American journal of physiology. Lung cellular and molecular physiology》2004,287(6):L1230-L1240
Chemokine synthesis by airway smooth muscle cells (ASMC) may be an important process underlying inflammatory cell recruitment in airway inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Fractalkine (FKN) is a recently described CX(3)C chemokine that has dual functions, serving as both a cell adhesion molecule and a chemoattractant for monocytes and T cells, expressing its unique receptor, CX(3)CR1. We investigated FKN expression by human ASMC in response to the proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, the T helper 2-type cytokines IL-4, IL-10, and IL-13, and the fibrogenic cytokine transforming growth factor (TGF)-beta. Neither of these cytokines alone had any significant effect on ASMC FKN production. Combined stimulation with IFN-gamma and TNF-alpha induced FKN mRNA and protein expression in a time- and concentration-dependent manner. TGF-beta had a significant inhibitory effect on cytokine-induced FKN mRNA and protein expression. Dexamethasone (10(-8)-10(-6) M) significantly upregulated cytokine-induced FKN mRNA and protein expression. Finally, we used selective inhibitors of the mitogen-activated protein kinases c-Jun NH(2)-terminal kinase (JNK) (SP-610025), p38 (SB-203580), and extracellular signal-regulated kinase (PD-98095) to investigate their role in FKN production. SP-610025 (25 microM) and SB-203580 (20 microM), but not PD-98095, significantly attenuated cytokine-induced FKN protein synthesis. IFN-gamma- and TNF-alpha-induced JNK phosphorylation remained unaltered in the presence of TGF-beta but was inhibited by dexamethasone, indicating that JNK is not involved in TGF-beta- or dexamethasone-mediated regulation of FKN production. In summary, FKN production by human ASMC in vitro is regulated by inflammatory and anti-inflammatory factors. 相似文献
2.
Chronic rejection is the major limiting factor to long term survival of solid organ allografts. The hallmark of chronic rejection is transplant atherosclerosis, which is characterized by the intimal proliferation of smooth muscle cells, endothelial cells, and fibroblasts, leading to vessel obstruction, fibrosis, and eventual graft loss. The mechanism of chronic rejection is poorly understood, but it is suspected that the associated vascular changes are a result of anti-HLA Ab-mediated injury to the endothelium and smooth muscle of the graft. In this study we have investigated whether anti-HLA Abs, developed by transplant recipients following transplantation, are capable of transducing signals via HLA class I molecules, which stimulate cell proliferation. In this report we show that ligation of class I molecules with Abs to distinct HLA-A locus and HLA-B locus molecules results in increased tyrosine phosphorylation of intracellular proteins and induction of fibroblast growth factor receptor expression on endothelial and smooth muscle cells. Treatment of cells with IFN-gamma and TNF-alpha up-regulated MHC class I expression and potentiated anti-HLA Ab-induced fibroblast growth factor receptor expression. Engagement of class I molecules also stimulated enhanced proliferative responses to basic fibroblast growth factor, which augmented endothelial cell proliferation. These findings support a role for anti-HLA Abs and cytokines in the transduction of proliferative signals, which stimulate the development of myointimal hyperplasia associated with chronic rejection of human allografts. 相似文献
3.
4.
Taurine transporter is expressed in vascular smooth muscle cells 总被引:2,自引:0,他引:2
Summary. The regulation of vascular smooth muscle cells (VSMCs) function by taurine has been a subject of increasing interest and investigation,
and taurine is taken up into cells through a specific transporter system, the taurine transporter (TAUT). In the present study,
we examined the expression of TAUT in VSMCs and the kinetic parameters of the uptake process of TAUT in VSMCs. RT-PCR and
western blot demonstrated that the mRNA and protein of TAUT was expressed in VSMCs in vitro. Immunohistochemistry using antibody
for TAUT revealed the expression of this protein in rat thoracic aorta. The maximal [3H]taurine uptake rate in VSMCs was 37.75 ± 3.13 pmol/min per mg of protein, with a K
m
value of 5.42 ± 0.81 μM. Thus, VSMCs are able to express a functional taurine transporter. The regulation and detailed function
of taurine and TAUT in VSMCs remain unclear, but our findings suggest a functional role for them in VSMCs metabolism. 相似文献
5.
Lajoie-Kadoch S Joubert P Létuvé S Halayko AJ Martin JG Soussi-Gounni A Hamid Q 《American journal of physiology. Lung cellular and molecular physiology》2006,290(6):L1238-L1246
The interleukin-17B receptor (IL-17BR) is expressed in a variety of tissues and is upregulated under inflammatory conditions. This receptor binds both its cognate ligand IL-17B and IL-17E/IL-25, a novel cytokine known to promote Th2 responses. The present study shows that airway smooth muscle cells express IL-17BR in vitro and that its expression is upregulated by TNF-alpha and downregulated by IFN-gamma. Our data indicate that TNF-alpha upregulates IL-17BR mainly through nuclear factor-kappaB as assessed with the IkappaB kinase 2 inhibitor AS-602868. In addition, both IFN-gamma and dexamethasone are able to antagonize a TNF-alpha-induced IL-17BR increase in mRNA expression. The mitogen-activated protein kinase kinase inhibitor U0126 totally reversed the inhibition observed with IFN-gamma, suggesting the involvement of the extracellular signal-regulated kinase pathway in this effect. In addition, on stimulation with IL-17E, airway smooth muscle cells increase their expression of ECM components, namely procollagen-alphaI and lumican mRNA. Furthermore, immunohistochemical analysis of biopsies from asthmatic subjects reveals that this receptor is abundant in smooth muscle layers. This is the first report showing IL-17BR receptor in structural cells of the airways. Our results suggest a potential proremodeling effect of IL-17E on airway smooth muscle cells through the induction of ECM and that its receptor is upregulated by proinflammatory conditions. 相似文献
6.
Abel S Hundhausen C Mentlein R Schulte A Berkhout TA Broadway N Hartmann D Sedlacek R Dietrich S Muetze B Schuster B Kallen KJ Saftig P Rose-John S Ludwig A 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(10):6362-6372
The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule. Inhibition experiments with selective hydroxamate inhibitors against the disintegrin-like metalloproteinases a disintegrin and metalloproteinase domain (ADAM)10 and ADAM17 suggest that ADAM10, but not ADAM17, is involved in constitutive CXCL16 cleavage. In addition, the constitutive cleavage of transfected human CXCL16 was markedly reduced in embryonic fibroblasts generated from ADAM10-deficient mice. By induction of murine CXCL16 in ADAM10-deficient fibroblasts with IFN-gamma and TNF-alpha, we show that endogenous ADAM10 is indeed involved in the release of endogenous CXCL16. Finally, the shedding of endogenous CXCL16 could be reconstituted by retransfection of ADAM10-deficient cells with ADAM10. Analyzing the expression and release of CXCXL16 by cultured vascular cells, we found that IFN-gamma and TNF-alpha synergize to induce CXCL16 mRNA. The constitutive shedding of CXCL16 from the endothelial cell surface is blocked by inhibitors of ADAM10 and is independent of additional inhibition of ADAM17. Hence, during inflammation in the vasculature, ADAM10 may act as a CXCL16 sheddase and thereby finely control the expression and function of CXCL16 in the inflamed tissue. 相似文献
7.
NPY, NPY receptors, and DPP IV activity are modulated by LPS, TNF-alpha and IFN-gamma in HUVEC 总被引:2,自引:0,他引:2
Silva AP Cavadas C Baïsse-Agushi B Spertini O Brunner HR Grouzmann E 《Regulatory peptides》2003,116(1-3):71-79
Since NPY increases endothelial cell (EC) stickiness for leukocytes, we studied the effects of LPS, TNF-alpha and IFN-gamma on its expression and action in HUVEC. Cytokines raised NPY and pro-NPY intracellular content and dipeptidyl peptidase IV (DPP IV) activity. Y1 and Y2 receptors were expressed in basal conditions, and LPS, TNF-alpha and IFN-gamma induced Y5 receptor expression with a concomitant extinction of Y2 receptor expression. NPY induced an intracellular calcium increase mainly mediated by Y2 and Y5 receptors in basal conditions. After stimulation with LPS, TNF-alpha and IFN-gamma, calcium increase was mainly caused by Y5 receptor. The modulation of the NPY system by LPS, TNF-alpha and IFN-gamma, and the NPY-induced calcium signaling suggest a role for NPY during the inflammatory response. 相似文献
8.
Thomas E Dick Roger Shannon Bruce G Lindsey Sarah C Nuding Lauren S Segers David M Baekey Kendall F Morris 《Journal of applied physiology》2005,99(2):691-698
Although it is well-established that sympathetic activity is modulated with respiration, it is unknown whether neural control of respiration is reciprocally influenced by cardiovascular function. Even though previous studies have suggested the existence of pulse modulation in respiratory neurons, they could not exclude the possibility that such cells were involved in cardiovascular rather than respiratory motor control, owing to neuroanatomic and functional overlaps between brain stem neurons involved in respiratory and cardiovascular control. The aim of this study was to test the hypothesis that respiratory motoneurons and putative premotoneurons are modulated by arterial pulse. An existing data set composed of 72 well-characterized, respiratory-modulated brain stem motoneurons and putative premotoneurons was analyzed using delta(2), a recently described statistic that quantifies the magnitude of arterial pulse-modulated spike activity [Dick TE and Morris KF. J Physiol 556: 959-970, 2004]. Neuronal activity was recorded in the rostral and caudal ventral respiratory groups of 19 decerebrate, neuromuscular-blocked, ventilated cats. Axonal projections were identified by rectified and unrectified spike-triggered averages of recurrent laryngeal nerve activity or by antidromic activation from spinal stimulation electrodes. The firing rates of approximately 30% of these neurons were modulated in phase with both the respiratory and cardiac cycles. Furthermore, arterial pulse modulation occurred preferentially in the expiratory phase in that only expiratory neurons had high delta(2) values and only expiratory activity had significant delta(2) values after partitioning tonic activity into the inspiratory and expiratory phases. The results demonstrate that both respiratory motoneurons and putative premotoneuronal activity can be pulse modulated. We conclude that a cardiac cycle-related modulation is expressed in respiratory motor activity, complementing the long-recognized respiratory modulation of sympathetic nerve activity. 相似文献
9.
10.
11.
Glomulin is predominantly expressed in vascular smooth muscle cells in the embryonic and adult mouse
McIntyre BA Brouillard P Aerts V Gutierrez-Roelens I Vikkula M 《Gene expression patterns : GEP》2004,4(3):351-358
Mutations in the glomulin gene result in dominantly inherited vascular lesions of the skin known as glomuvenous malformations (GVMs). These lesions are histologically distinguished by their distended vein-like channels containing characteristic 'glomus cells', which appear to be incompletely or improperly differentiated vascular smooth muscle cells (VSMCs). The function of glomulin is currently unknown. We studied glomulin expression during murine development (E9.5 days post-coitum until adulthood) by non-radioactive in situ hybridization. Glomulin was first detected at E10.5 dpc in cardiac outflow tracts. Later, it showed strong expression in VSMCs as well as a limited expression in the perichondrium. At E11.5-14.5 dpc glomulin RNA was most abundant in the walls of the large vessels. At E16.5 dpc expression was also detectable in smaller arteries and veins. The high expression of glomulin in murine vasculature suggests an important role for glomulin in blood vessel development and/or maintenance, which is supported by the vascular phenotype seen in GVM patients with mutations in this gene. 相似文献
12.
Madden JA Ray DE Keller PA Kleinman JG 《American journal of physiology. Lung cellular and molecular physiology》2001,280(2):L264-L271
The purposes of this study were to determine 1) the presence of the major ion transport activities that regulate cytoplasmic pH (pH(c)) in cat pulmonary artery smooth muscle cells, i.e., Na+/H+ and the Na+-dependent and -independent Cl-/HCO3- exchange, 2) whether pH(c) changes in cells from small (SPAs) and large (LPAs) pulmonary arteries during hypoxia, and 3) whether changes in pH(c) are due to changes in the balance of exchange activities. Exchange activities as defined by physiological maneuvers rather than molecular identity were ascertained with fluorescence microscopy to document changes in the ratio of the pH(c) indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Steady-state pH(c) was higher in LPA than in SPA normoxic smooth muscle cells. SPAs and LPAs possessed all three transport activities; in HCO3- containing normoxic solutions, Cl-/HCO3- exchange rather than Na+/H+ exchange set the level of pH(c); in HCO3- containing hypoxic solutions, pH(c) increased in SPA and decreased in LPA cells; altering the baseline pH(c) of a cell type to that of the other did not change the direction of the pH(c) response during hypoxia. The absence of Na+ prevented hypoxia-induced alkalinization in SPA cells; in both cell types, inhibiting the Cl-/HCO3- exchange activities reversed the normal direction of pH(c) changes during hypoxia. 相似文献
13.
J L Prehn C J Landers S R Targan 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(8):4277-4283
The role of TNF-alpha in the mucosal inflammation of Crohn's disease has been demonstrated by the prolonged clinical responses and/or remissions among patients receiving i.v. infusion of anti-TNF-alpha. A correlation between TNF-alpha and elevated IFN-gamma production is suggested by the reduction in the number of IFN-gamma producing lamina propria mononuclear cells (LPMC) found in colonic biopsies from anti-TNF-alpha-treated patients. The aim of this study was to define the mechanism of TNF-alpha-augmented mucosal T cell IFN-gamma production. In this paper we present evidence that cultured LPMC secrete a factor which acts on preactivated T cells in concert with TNF-alpha to augment IFN-gamma production. This activity is independent of IL-12 and IL-18, the well-documented potentiators of IFN-gamma expression, and is not produced by PBMC. Peripheral blood PHA-activated T cells incubated in supernatants from LPMC became responsive to TNF-alpha by increasing IFN-gamma output upon stimulation. These results are consistent with a model in which LPMC, but not PBMC, release an unidentified substance when cultured in vitro with low dose IL-2. This substance can act on preactivated peripheral T cells, as well as on lamina propria T cells, conditioning them to respond to TNF-alpha by increased IFN-gamma secretion upon stimulation. Expression of this factor in the gut mucosa could contribute to up-regulation of the Th1 response in the presence of TNF-alpha, and could be important for mucosal immunoregulation. 相似文献
14.
Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. 总被引:5,自引:0,他引:5
R Natarajan N Gonzales L Xu J L Nadler 《Biochemical and biophysical research communications》1992,187(1):552-560
Diabetes mellitus is associated with an increased risk of cardiovascular disease. In order to elucidate the association between hyperglycemia and vascular complications, the growth patterns of vascular smooth muscle cells were studied under high glucose conditions. We examined the effect of culturing porcine aortic smooth muscle cells (PVSMC) in high glucose (25 mM, HG) on total cell protein, cell volume, DNA synthesis and cell number. We observed that cells cultured in HG had higher total cell protein content which was associated with increased cell volume as compared to the cells cultured under normoglycemic conditions (5.5 mM glucose, NG). PVSMC cultured in HG also had 1.4 fold increased growth rate and a greater fetal calf serum-induced DNA synthesis rate compared to cells cultured in NG. These observations suggest for the first time that elevated glucose could lead to both hypertrophic and hyperplastic effects in PVSMC. We also examined protein kinase C (PKC) activities as well as the cellular levels of the 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) in NG and HG as possible mechanisms for the enhanced growth effects in HG. The results show that PVSMC cultured in HG have increased PKC activity as well as increased levels of 12-HETE. Therefore hyperglycemia may be linked to accelerated vascular disease by increasing smooth muscle cell growth and proliferation. 相似文献
15.
An approach to obtain monoclonal antibodies directed against cell surface proteins induced by interferon has been developed in order to characterize such proteins and determine their role. Hybridomas obtained by fusion of murine myeloma cells and spleen cells of mice immunized with interferon-alpha-treated Daudi cells were screened for the production of antibodies reacting differentially with interferon-alpha-treated and untreated Daudi cells. One such hybridoma, 2D5, produced an antibody reacting with a 28/32 kDa homodimeric protein (p28/32) expressed at the surface of Daudi cells in response to IFN-alpha treatment. IFN-alpha treatment also increased the basal level of p28/32 detected on peripheral blood leukocytes (PBL). 2D5 Antibody was used to probe the expression of p28/32 on different cells and in response to various inducers. It appears that 2D5 reacted in fact with CD69, a marker of leukocyte activation and that, following IFN-alpha treatment, CD69 was not induced on all cultured cell lines tested. Interestingly, IFN-gamma was also able to induce CD69 expression on a restricted number of cell lines but the induction pattern only partially overlapped that of IFN-alpha. As expected, activation of cells with phorbol myristate acetate (PMA) resulted in a notable increase in the level of CD69 on all cell lines considered except for the epithelial and fibroblastic types. 相似文献
16.
Snyder GD Oberley-Deegan RE Goss KL Romig-Martin SA Stoll LL Snyder JM Weintraub NL 《American journal of physiology. Heart and circulatory physiology》2008,294(5):H2053-H2059
Surfactant protein D (SP-D) is a constituent of the innate immune system that plays a role in the host defense against lung pathogens and in modulating inflammatory responses. While SP-D has been detected in extrapulmonary tissues, little is known about its expression and function in the vasculature. Immunostaining of human coronary artery tissue sections demonstrated immunoreactive SP-D protein in smooth muscle cells (SMCs) and endothelial cells. SP-D was also detected in isolated human coronary artery SMCs (HCASMCs) by PCR and immunoblot analysis. Treatment of HCASMCs with endotoxin (LPS) stimulated the release of IL-8, a proinflammatory cytokine. This release was inhibited >70% by recombinant SP-D. Overexpression of SP-D by adenoviral-mediated gene transfer in HCASMCs inhibited both LPS- and TNF-alpha-induced IL-8 release. Overexpression of SP-D also enhanced uptake of Chlamydia pneumoniae elementary bodies into HCASMCs while attenuating IL-8 production induced by bacterial exposure. Both LPS and TNF-alpha increased SP-D mRNA levels by five- to eightfold in HCASMCs, suggesting that inflammatory mediators upregulate the expression of SP-D. In conclusion, SP-D is expressed in human coronary arteries and functions as an anti-inflammatory protein in HCASMCs. SP-D may also participate in the host defense against pathogens that invade the vascular wall. 相似文献
17.
18.
Osawa Y Yim PD Xu D Panettieri RA Emala CW 《American journal of physiology. Lung cellular and molecular physiology》2007,292(6):L1414-L1421
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase. 相似文献
19.
20.
Shuo Huang Ping Zhao Liying Yang Yuan Chen Jie Yan Enkui Duan Jie Qiao 《Reproductive biology and endocrinology : RB&E》2011,9(1):1-8