首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nick P  Schafer E 《Planta》1988,175(3):380-388
Photo- or gravitropic stimulation of graminean coleoptiles involves the formation of putative tropistic transverse polarities. It had been postulated that these polarities can be extended by stabilization to developmentally active polarities. Such polarities are known from unicellular spores and zygotes of lower plants and regeneration experiments in dicotyledonous plants. In coleoptiles, photo- or gravitropic stimulation results in stability to counterstimulation of equal strength (with only transient bending in the direction of the second stimulus), as a result of a directional memory, if the time interval between both stimuli exceeds 90 min. This directional memory develops from a labile precursor, which is present from at least 20 min after induction. Once it is stable, spatial memory is conserved for many hours. The formation of spatial memory involves at least one step not present in the common tropistic transduction chain. The spatial expression of memory as curvature is restricted to three distinct responses: (i) curving in the direction of the first stimulus (for time intervals exceeding 90 min); (ii) curving in the direction of the second stimulus (for time intervals shorter than 65 min); and (iii) zero-curvature (for time intervals between 65 and 90 min). This can be interpreted in terms of a stable transverse polarity, which is not identical with the putative tropistic transverse polarity, but might be an extension of it.  相似文献   

2.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

3.
Nick P  Schafer E 《Planta》1988,173(2):213-220
The influence of gravitropic stimulation upon blue-light-induced first positive phototropism for stimulations in the same (light source and center of gravity opposite to each other) and in opposing directions was investigated in maize cole-optiles by measuring fluence-response patterns. As a result of gravitropic counterstimulation, phototropic bending was transient with maximum curvature occurring 100 min after stimulation. On a horizontal clinostat, however, the seedlings curved for 20 h. Gravistimulation in the opposite direction acted additively upon blue-light curvature. Gravistimulation in the same direction as phototropic stimulation produced a complex behaviour deviating from simple additivity. This pattern can be explained by a gravitropically mediated sensitization of the phototropic reaction, an optimal dependence of differential growth on the sum of photo-and gravistimulation, and blue-light-induced inhibition of gravitropic curvature at high fluences. These findings indicate that several steps of photo-and gravitransduction are separate. Preirradiation with red light desensitized the system independently of applied gravity-treatment, indicating that the site of red-light interaction is common to both transduction chains.Abbreviations BL blue light - G+ stimulation by light and gravity in the same direction (i.e. light source and center of gravity opposite to each other) - G- stimulation by light and gravity in opposing directions  相似文献   

4.
Nick P  Schafer E 《Planta》1989,179(1):123-131
Rotation of unstimulated maize (Zea mays L.) seedlings on a horizontal clinostat is accompanied by a strong bending response of the coleoptiles towards the caryopsis, yielding curvatures exceding 100°. The corresponding azimuthal distribution shows two peaks, each of which is displayed by 30° from the symmetry axis connecting the shortest coleoptile and caryopsis cross sections. It is argued that this spatial pattern is not the result of two independent bending preferences, but caused by a one-peaked distribution encountering an obstacle in its central part and thus being split into the two subpeaks. The existence of one preferential direction justifies considering this response to be a nastic movement. Its time course consists of an early negative phase (coleoptiles bend away from the caryopsis) followed 2 h later by a longlasting positive bending towards the caryopsis. In light-interaction experiments, fluence-response curves for different angles between blue light and the direction of the nastic response were measured. These experiments indicate that blue light interacts with the nastic response at two levels: (i) phototonic inhibition, and (ii) addition of nastic and phototropic curvatures. It is concluded that phototropic and phototonic transduction bifurcate before the formation of phototropic transverse polarity. The additivity of nastic and phototropic responses was followed at the population level. At the level of the individual seedling, one observes, in the case of phototropic induction opposing nastic movement, three distinct responses: either strong phototropism, or nastic bending, or an avoidance response which involves strong curvature perpendicular to the stimulation plane. With time the nastic bending becomes increasingly stable against opposing phototropic stimulation. This can be seen from a growing proportion of seedlings exhibiting nastic bending when light is applied at variable intervals after the onset of clinostat rotation. At the transition from instability to stability, this type of experiment produces a high percentage of seedlings displaying the avoidance response. However, no cancelling resulting in zero curvature can be observed. It is concluded that the endogenous polarity underlying the nastic response is different in its very nature from the blue-light-elicited stable transverse polarity described earlier (Nick and Schäfer 1988 b).Abbreviation BL blue light (449 nm)  相似文献   

5.
H. Edelmann  P. Schopfer 《Planta》1989,179(4):475-485
The kinetics of inhibition by protein- and RNA-synthesis inhibitors (cycloheximide and cordycepin, respectively) of indole-3-acetic acid (IAA)-induced elongation growth were investigated using abraded coleoptile segments of Zea mays L. Removal of the cuticle — a diffusion barrier for solutes — by mechanical abrasion of the outer epidermal cell wall increased the effectiveness of inhibitors tremendously. In an attempt to elucidate the role of growth-limiting protein(s) (GLP) in the growth mechanism the following results were obtained. The elongation induced by IAA was completely inhibited when cycloheximide (10 mol·l-1) was applied to abraded coleoptile segments as shortly as 10 min before the onset of the growth response (=5 min after administration of IAA). However, when cycloheximide was applied after 60 min of IAA treatment (when a steady-state growth rate is reached), the time required for complete cessation of growth was much longer (about 40 min). Cycloheximide inhibited the incorporation of [3H]leucine into protein within about 5 min. Cordycepin (400 mol·l-1) prevented IAA-induced growth when applied as shortly as 25 min before the onset of the growth response (=10 min before administration of IAA) but required more than 60 min for a full inhibition of steady-state growth. The incorporation of [3H]adenosine into RNA was inhibited by cordycepin within 10 min. It is concluded that, contrary to previous investigations with nonabraded organ segments, the initiation of growth by IAA depends directly on the synthesis of GLP. Moreover, the apparent lifetime of GLP is at least four times longer than the time required by cycloheximide to inhibit the initiation of growth by IAA. This is interpreted to mean that GLP is not present before IAA starts to act but is synthesized as a consequence of IAA action starting a few minutes before the initiation of growth. Interpreting the kinetics of growth inhibition by cordycepin in a similar way, we further conclude that GLP synthesis is mediated by IAA-induced synthesis of the corresponding mRNA which starts about 10 min before the onset of GLP synthesis. Inhibition by cycloheximide and cordycepin of IAA-induced growth cannot be alleviated by acidifying the cell wall to pH 4-5, indicating that these inhibitors do not act on growth via an inhibition of auxin-mediated proton excretion.Abbreviations CHI cycloheximide - COR cordycepin - GLP growth-dimiting protein(s) - IAA indole-3-acetic acid - mRNAGLP mRNA coding for GLP  相似文献   

6.
When membrane vesicles from maize (Zea mays L.) coleoptiles are extracted at high buffer strength, a pH-driven, saturable association of [14C] indole-3-acetic acid is found, similar to the in-vitro auxin-transport system previously described for Cucurbita hypocotyls. The phytotropins naphthylphthalamic acid and pyrenoylbenzoic acid increase net uptake, pressumably by inhibiting the auxin-efflux carrier.Abbreviations IAA indole-3-acetic acid - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA, 2-NAA 1-, 2-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid  相似文献   

7.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

8.
Two types of auxin-binding sites (sites I and II) in membranes from maize (Zea mays L.) coleoptiles were characterized. Site I was a protein with a relative molecular mass of 21 000, and the distribution of site I protein on sucrose density gradient fractionation coincided with that of NADH-cytochrome-c reductase (EC 1.6.99.3), a marker enzyme of the endoplasmic reticulum. Immunoprecipitation and immunoblotting studies showed that the content of site I protein in maize coleoptiles was approx. 2 g·(g FW)-1. Site II occurred in higher-density fractions and also differed immunologically from site I. Site I was present at the early developmental stage of the coleoptile and increased only twice during coleoptile growth between day 2 and 4. Site II activity was low at the early stage and increased more substantially between day 3 and 4, a period of rapid growth of the coleoptile. Both sites decreased concurrently after day 4, followed by a reduction in the growth rate of the coleoptile. Coleoptiles with the outer epidermis removed showed a lower site I activity than intact coleoptiles, indicating that site I was concentrated in the outer epidermis. Site II, in contrast, remained constant after removal of the outer epidermis. The results indicate that site I is not a precursor of site II and that the two sites are involved in different cellular functions.Abbreviations FW fresh weight - M r relative molecular mass - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

9.
S. H. Russell  R. F. Evert 《Planta》1985,164(4):448-458
The vascular system of the Zea mays L. leaf consists of longitudinal strands interconnected by transverse bundles. In any given transverse section the longitudinal strands may be divided into three types of bundle according to size and structure: small, intermediate, large. Virtually all of the longitudinal strands intergrade structurally however, from one bundle type to another as they descend the leaf. For example, all of the strands having large-bundle anatomy appear distally as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. Only the large bundles and the intermediates that arise midway between them extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of longitudinal bundles at the base of the blade, both the total and mean cross-sectional areas of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements.  相似文献   

10.
Isolated, 2.5-mm-long coleoptile tips of Zea mays L. cv. Anjou 210 were analyzed for diffusible and tissue-extractable indole-3-acetic acid (IAA) in comparison with the level of base-labile conjugates at various times after excision. The results indicate that base-labile conjugates of IAA do not serve as major sources of free IAA in maize coleoptile tips.Abbreviations IAA indole-3-acetic acid - TLC thin-layer chromatography  相似文献   

11.
A. Hager  M. Brich 《Planta》1993,189(4):567-576
Tips of maize coleoptiles, which function as esential light sensors for the phototropic growth reaction, exhibit a rapid blue-light-induced phosphorylation of a plasma-membrane-associated 100-kDa protein. Characteristics of this reaction are as follows: (i) The functional unit involved in the light-dependent phosphorylation consists of a photoreceptor, a protein kinase and the 100-kDa protein. This complex is only localized in the plasma membrane of tips but not in other parts of the seedling, (ii) The photoreceptor is a cryptochrome-like compound, (iii) The pH optimum of the light-dependent phosphorylation on isolated plasma membranes is around pH 7.8 whereas the light-independent phosphorylation of other membrane proteins occurs at lower values (pH 6.2). (iv) The light-induced in-vitro phosphorylation of the 100-kDa protein is strongly inhibited by the protein-kinase inhibitor staurosporine (IC50=4 nM). (v) The 32P-moiety of a 32P-[100 kDa]-protein complex generated after a light pulse with the aid of a membrane-associated protein kinase in the presence of [γ-32P]ATP cannot be removed by a 100-fold higher level of (unlabelled) ATP. This fact indicates that protein and phosphate are covalently connected and that the complex is not a short-lived intermediate. (vi) The 100-kDa protein is not identical to the plasma-membrane H+-ATPase, as shown by immunostaining on Western blots. (vii) Irradiation-dependent in vivo phosphorylation of the 100-kDa protein in tips is already saturated by a light pulse of 5 s. In contrast, the de-phosphorylation of the protein in the dark is a slow reaction lasting about 30 min. It is suggested that the blue-light-triggered phosphorylated status of the 100-kDa protein is an early step in phototropism of the coleoptile, affecting the transport of auxin primarily in the irradiated flank.  相似文献   

12.
A. Nelles 《Planta》1977,137(3):293-298
The membrane potential difference of dwarf maize coleoptile cells is increased by both 10-5moll-1 gibberellic acid (GA3) and indoleacetic acid (IAA) a few minutes after application. A final level is reached after 10–20 min. The membrane permeability ratio P Na:P K is altered by both hormones during the first 15 min after application, indicating a rapid effect on the membrane. Elongation growth of coleoptile segments, however, is only stimulated by IAA. The auxin-induced growth as well as the auxin effect on membrane permeability depends on the calcium ion concentration of the medium. It is concluded that IAA acts via a proton extrusion pump that is electrically balanced by a potassium ion uptake, driven by the electromotive force of the pump. The mode of action of GA3 on elongation growth is assumed to involve a process that depends on the physiologic state of the tissue and/or metabolic energy.Abbreviations IAA indoleacetic acid - GA3 gibberellic acid - FC fusicoccin - PD electric potential difference between the vacuole and the external medium  相似文献   

13.
Randy Moore  James D. Smith 《Planta》1985,164(1):126-128
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA abscisic acid  相似文献   

14.
C. Kerhoas  G. Gay  C. Dumas 《Planta》1987,171(1):1-10
A multidisciplinary approach (freeze-fracture, nuclear magnetic resonance, differential scanning calorimetry, isoelectric focusing and fluorochromatic reaction test) has been used to follow the behaviour of Zea mays pollen during dehydration - and to estimate its quality. At anthesis, the water content of maize pollen is 57–58% and the vegetative plasma membrane is continous and well structured with a very low density of intramembraneous particles on the extraplasmic fracture face. Maize pollen grains can withstand the drying process until a water content of 28% is reached, at which point 60–80% of the individuals show a negative reaction in the fluorochromatic test. At this water content, there is no more crystallizable water and thus metabolism decreases, leading to oxidative damage and the formation of gelphase microdomains in the plasma membrane. Consequently, the plasma-membrane permeability is modified. At 15–13% water content, all pollen grains show a negative fluorochromatic reaction, and gel-phase microdomains are more numerous but membranes still have a bilayer structure. Relaxation-time experiments indicate the occurrence of water replacement at the membrane level. Thus, sugar may stabilize the membrane structure at water contents as low as 3%. During the dehydration process, pollen walls act as elastic structures and remain closely applied to the protoplast. The combination of wall deformation and water replacement would permit pollen survival until oxidative damage occurs in the dehydrated grain.Abbreviations EF extraplasmic fracture face - FCR fluorochromatic reaction - IMP intramembraneous particle - NMR nuclear magnetic resonance - PF protoplasmic fracture face - T2 relaxation time  相似文献   

15.
The apoplastic fluids of field-grown Zea mays and Zea luxurians plants were isolated from surface sterilized stem tissue by centrifugation and spread on agar plates containing a nitrogen-free, defined medium. The predominant bacterium isolated from these plates was characterized further. The ability of this bacterium to fix nitrogen was confirmed by its ability to grow on a semi-solid, nitrogen-free medium and reduce 15N2 to 15NH3 and acetylene to ethylene. Protions of the nifH and 16S rRNA genes from this organism were amplified by PCR and sequenced. The nifH gene, which codes for dinitrogenase reductase, from this organism is closely related to nifH from Klebsiella pneumoniae. Similarly, the 16S rRNA gene sequences and carbon utilization tests grouped it closely with K. pneumoniae. Based an these data, the isolates from Z. mays and Z. luxurians are tentatively classified as Klebsiella spp. (Zea). The ability of this bacterium to contribute to the nitrogen economy of the corn plant is unknown.  相似文献   

16.
Nuclei were isolated from the shoots of Zea mays and assayed for endogenous RNA polymerase activity in vitro. Maximum incorporation from radioactive precursors (70 pmol [3H]uridine 5 monophosphate/100 g DNA) was reached after incubation for 1 h at 25°C. The RNA product, analysed by polyacrylamide gel electrophoresis, was polydisperse in size with an upper limit of 2x106 daltons. Discrete peaks of rRNA were not detected, probably because of endogenous ribonuclease activity. The inclusion of -amanitin (4 g/ml) in the incubation reduced the total incorporation by approximately 40% but did not significantly alter the size of the RNA product. Although 40% of the total activity could be attributed to RNA polymerase II, [3H]RNA synthesised in vitro was found not to contain long sequences of poly (A).Abbreviations oligo (dT) oligo (deoxythymidylic acid) - poly (A) poly (adenylic acid) - GTP guanosine 5 triphosphate - ATP adenosine 5 triphosphate - CTP cytidine 5 triphosphate - UTP utidine 5 triphosphate - UMP uridine 5 monophosphate - PPO 2,5-diphenyloxazole - POPOP 1,4-di-2-(5-phenyloxazolyl) benzene  相似文献   

17.
The hydraulic conductivity of the lateral walls of early metaxylem vessels (Lpx in m · s–1 · MPa–1) was measured in young, excised roots of maize using a root pressure probe. Values for this parameter were determined by comparing the root hydraulic conductivities before and after steam-ringing a short zone on each root. Killing of living tissue virtually canceled its hydraulic resistance. There were no suberin lamellae present in the endodermis of the roots used. The value of Lpx ranged between 3 · 10–7 and 35 · 10–7 m · s–1 · MPa–1 and was larger than the hydraulic conductivity of the untreated root (Lpr = 0.7 · 10–7 to 4.0 · 10–7 m · s–1 · MPa–1) by factor of 3 to 13. Assuming that all flow through the vessel walls was through the pit membranes, which occupied 14% of the total wall area, an upper limit of the hydraulic conductivity of this structure could be given(Lppm=21 · 10–7 to 250 · 10–7 m · s–1 · MPa–1). The specific hydraulic conductivity (Lpcw) of the wall material of the pit membranes (again an upper limit) ranged from 0.3 · 10–12 to 3.8 · 10–12 m2 · s–1 · MPa–1 and was lower than estimates given in the literature for plant cell walls. From the data, we conclude that the majority of the radial resistance to water movement in the root is contributed by living tissue. However, although the lateral walls of the vessels do not limit the rate of water flow in the intact system, they constitute 8–31% of the total resistance, a value which should not be ignored in a detailed analysis of water flow through roots.Abbreviatations and Symbols kwr (T 1 2/W ) rate constant (half-time) of water exchange across root (s–1 or s, respectively) - Lpcw specific hydraulic conductivity of wall material (m2 · s–1 · MPa–1) - Lppm hydraulic conductivity of pit membranes (m · s –1 · MPa–1) - Lpr hydraulic conductivity of root (m · s–1 · MPa–1) - Lpx lateralhydraulic conductivity of walls of root xylem (m · s –1 · MPa–1) This research was supported by a grant from the Bilateral Exchange Program funded jointly by the Natural Sciences and Engineering Research Council of Canada and the Deutsche Forschungsgemeinschaft to C.A.P., and by a grant from the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 137, to E.S. The expert technical help of Mr. Burkhard Stumpf and the work of Ms. Martina Murrmann and Ms. Hilde Zimmermann in digitizing chart-recorder strips is gratefully acknowledged.  相似文献   

18.
19.
Minor antigens characteristic of developing and mature embryos were not found in the shoot and root meristems of the seedlings. Some of these embryonal antigens (EA) were present, however, in callus and cell-suspension cultures, irrespective of their tissue origin, and were maintained throughout repeated subcultures, in some cases for more than 2 years. These EA were distinct both from the meristematic antigens found in the intact seedlings and in callus cultures, and from organ-specific antigens found only in intact plants. The EA of callus tissues derived from several maize genotypes were serologically identical. We therefore assume that these EA are proliferation proteins or early proteins expressed by cells that have not undergone any determination and lack any tissue or organ specificity.  相似文献   

20.
Inner mesophyll cells from coleoptiles of Zea mays L. cv. Merit were fixed after varying periods of gravistimulation. A statistically significant amount (17–21%) of amyloplast sedimentation occurred in these cells after 30 s of gravistimulation. The presentation time is approx. 40 s or less. The accumulation of amyloplasts near the new lower wall shows a linear relationship to the logarithm of the gravistimulation time (r=0.92 or higher). The intercept of this line with the baseline value of amyloplasts in vertical coleoptiles indicates that the number of amyloplasts on the new lower wall begins increasing 11–15 s after the onset of gravistimulation. Direct observations of living cells confirm that many amyloplasts sediment within less than 15–30 s. These rapid kinetics are consistent with the classical statolith hypothesis of graviperception involving the sedimentation of amyloplasts to the vicinity of the new lower wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号