首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed to elucidate the mechanisms that may lead to an efficient strategy to induce a suitable host response of the vaginal mucosa upon exposure to intravaginally delivered exogenous compounds. It was hypothesized that the upregulation of intercellular adhesion molecule (ICAM)-1 gene expression may reflect the inflammatory response evoked by exogenous compounds. Major emphasis was placed on ethylenediamine tetraacetic acid (EDTA) which was added as a synergistic agent to conventional spermicidal agents or anti-HIV drugs. The levels of ICAM-1 mRNA were examined as a surrogate marker for inflammatory response in human vaginal epithelial cells upon exposure to EDTA or interleukin (IL)-1β (i.e. positive control, 25 mM). The effects of estrogen on EDTA-induced ICAM-1 expression were also evaluated for the estrogen involvement in the inflammatory process of the vaginal mucosa. ICAM-1 expression in human vaginal cells (VK2/E6E7 cells) increased as EDTA concentration added to human vaginal cell lines increased. The effects of estrogen on EDTA-induced ICAM-1 expression in human vaginal epithelial cells were estrogen-concentration dependent; estrogen at lower concentrations (~1–10 nM) did not affect ICAM-1 expression, whereas estrogen at higher concentrations (~100 nM–1 µM) attenuated ICAM-1 expression. The influence of estrogen in ICAM-1 expression suggests the beneficial effects of estrogen on the regulation of vaginal homeostasis. Identification and quantification of specific surrogate markers for the inflammatory response evoked by exogenous compounds and their regulation by estrogen will lead to an efficient strategy against sexually transmitted diseases including AIDS.  相似文献   

2.
Inflammation of the female reproductive tract increases susceptibility to HIV-1 and other viral infections and, thus, it becomes a serious liability for vaginal products. Excessive release of proinflammatory cytokines may alter the mucosal balance between tissue destruction and repair and be linked to enhanced penetration and replication of viral pathogens upon chemical insult. The present study evaluates four surface-active microbicide candidates, nonoxynol-9 (N-9), benzalkonium chloride (BZK), sodium dodecyl sulfate, and sodium monolaurate for their activity against human sperm and HIV, and their capacity to induce an inflammatory response on human vaginal epithelial cells and by the rabbit vaginal mucosa. Spermicidal and virucidal evaluations ranked N-9 as the most potent compound but were unable to predict the impact of the compounds on vaginal cell viability. Interleukin (IL)-1 release in vitro reflected their cytotoxicity profiles more accurately. Furthermore, IL-1 concentrations in vaginal washings correlated with cumulative mucosal irritation scores after single and multiple applications (P < 0.01), showing BZK as the most damaging agent for the vaginal mucosa. BZK induced rapid cell death, IL-1 release, and IL-6 secretion. The other compounds required either more prolonged or repeated contact with the vaginal epithelium to induce a significant inflammatory reaction. Increased IL-8 levels after multiple applications in vivo identified compounds with the highest cumulative mucosal toxicity (P < 0.01). In conclusion, IL-1, IL-6, and IL-8 in the vaginal secretions are sensitive indicators of compound-induced mucosal toxicity. The described evaluation system is a valuable tool in identifying novel vaginal contraceptive microbicides, selecting out candidates that may enhance, rather than decrease, HIV transmission.  相似文献   

3.
Resident human lamina propria immune cells serve as powerful effectors in host defense. Molecular events associated with the initiation of an intestinal inflammatory response in these cells are largely unknown. Here, we aimed to characterize phenotypic and functional changes induced in these cells at the onset of intestinal inflammation using a human intestinal organ culture model. In this model, healthy human colonic mucosa was depleted of epithelial cells by EDTA treatment. Following loss of the epithelial layer, expression of the inflammatory mediators IL1B, IL6, IL8, IL23A, TNFA, CXCL2, and the surface receptors CD14, TLR2, CD86, CD54 was rapidly induced in resident lamina propria cells in situ as determined by qRT-PCR and immunohistology. Gene microarray analysis of lamina propria cells obtained by laser-capture microdissection provided an overview of global changes in gene expression occurring during the initiation of an intestinal inflammatory response in these cells. Bioinformatic analysis gave insight into signalling pathways mediating this inflammatory response. Furthermore, comparison with published microarray datasets of inflamed mucosa in vivo (ulcerative colitis) revealed a significant overlap of differentially regulated genes underlining the in vivo relevance of the organ culture model. Furthermore, genes never been previously associated with intestinal inflammation were identified using this model. The organ culture model characterized may be useful to study molecular mechanisms underlying the initiation of an intestinal inflammatory response in normal mucosa as well as potential alterations of this response in inflammatory bowel disease.  相似文献   

4.
The anti-inflammatory potential of eight indigenous probiotic Lactobacillus isolates was evaluated in vitro in terms of modulating the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions. Amongst these, Lactobacillus plantarum Lp91 was the most potent anti-inflammatory strain as it evoked a significant (P < 0.001) down-regulation of TNF-α by −1.45-fold relative to the control in THP-1 cells. However, in terms of IL-6 expression, all the strains could up-regulate its expression considerably at different levels. Hence, based on in vitro expression of TNF-α, Lp91 was selected for in vivo study in lipopolysaccharide (LPS)-induced mouse model to look at the expression of TNF-α, IL-6, monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and E-selectin in mouse aorta. In LPS challenged (2 h) mice group fed with Lp91 for 10 days, TNF-α, IL-6, MCP-1, VCAM-1, ICAM-1 and E-selectin expressions were significantly down-regulated by 3.10-, 10.02-, 4.22-, −3.14-, 2.28- and 5.71-fold relative to control conditions. In conclusion, Lp91 could serve as a candidate probiotic strain to explore it as a possible biotherapeutic anti-inflammatory agent against inflammatory diseases including cardiovascular disease.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-013-0347-5) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Shen A  Yang J  Gu Y  Zhou D  Sun L  Qin Y  Chen J  Wang P  Xiao F  Zhang L  Cheng C 《The FEBS journal》2008,275(17):4343-4353
Lipopolysaccharide is a major constituent of the outer membrane of Gram-negative bacteria. It activates monocytes and macrophages to produce cytokines such as tumor necrosis factor-alpha and interleukins IL-1beta and IL-6. These cytokines appear to be responsible for the neurotoxicity observed in peripheral nervous system inflammatory disease. It has been reported that, in the central nervous system, the expression level of intercellular adhesion molecule-1 (ICAM-1) was dramatically upregulated in response to LPS, as well as many inflammatory cytokines. ICAM-1 contributes to multiple processes seen in central nervous system inflammatory disease, for example migration of leukocytes to inflammatory sites, and adhesion of polymorphonuclear cells and monocytes to central nervous system cells. In the present study, we found that lipopolysacharide evoked ICAM-1 mRNA and protein expression early at 1 h post-injection, and the most significant increase was seen at 4 h. Immunofluorescence double-labeling suggested that most of the ICAM-1-positive staining was located in Schwann cells. Using Schwann cell cultures, we demonstrated that ICAM-1 expression in Schwann cells is regulated by mitogen-activated protein kinases, especially the p38 and stress-activated protein kinase/c-Jun N-terminal kinase pathways. Thus, it is thought that upregulation of ICAM-1 expression in Schwann cells may be important for host defenses after peripheral nervous system injury, and reducing the biosynthesis of ICAM-1 and other cytokines by blocking the cell signal pathway might provide a new strategy against inflammatory and immune reaction after peripheral nerve injury.  相似文献   

7.
Periodontal diseases, such as gingivitis and periodontitis, are caused by a mixed infection by several types of bacteria in the dental plaque, causing a chronic inflammation of the gingival mucosa. Inflammatory processes in conjunction with immune responses to bacterial attacks are generally protective. In profound periodontitis, however, hyperresponsiveness and hypersensitivity of the immune system are counterproductive because of the destruction of the affected periodontal connective tissues. The intercellular adhesion molecule type 1 (ICAM-1) plays a key role in the onset and manifestation of inflammatory responses. Thus, inhibition of ICAM-1 expression could be of therapeutic relevance for the treatment of destructive periodontitis. Here, antisense oligonucleotides (AS-ON) directed against ICAM-1 suppress protein expression and mRNA levels specifically and effectively in primary human endothelial cells of different tissue origin. Moreover, downregulation of ICAM-1 expression is also observed in AS-ON-transfected inflamed gingival mucosal tissue of patients with periodontal diseases. This work strongly suggests exploiting the local topical application of ICAM-1-directed AS-ON as a therapeutic tool against inflammatory processes of the human gingiva.  相似文献   

8.
Neonatal mice have a delayed CD4-mediated inflammatory response to Pneumocystis carinii (PC) infection in the lungs that corresponds to a delayed TNF-alpha response and a delayed clearance of the organisms compared with adult mice. Since TNF-alpha is known to drive the up-regulation of adhesion molecules, we examined the expression and function of adhesion molecules in the lungs of neonatal mice. The expression of both ICAM-1 and VCAM-1 was significantly lower in the lungs of PC-infected neonatal mice compared with adults. Additionally, migration of neonatal T cells across endothelial cells expressing VCAM-1 and monocyte chemotactic protein-1 was aberrant compared with that in adult T cells, although alpha(4)beta(1) integrin-mediated adhesion of neonatal lymphocytes was comparable to that of adult lymphocytes. Treatment of neonatal mice with exogenous TNF-alpha resulted in increased expression of ICAM-1 and VCAM-1 as well as increased expression of chemokines, resulting in infiltration of CD4(+) cells into the lungs. Treatment with exogenous TNF-alpha resulted in a trend (although not statistically significant) toward a reduction of PC organisms from the lungs. These data indicate that neonatal lung endothelial cells do not up-regulate ICAM-1 and VCAM-1 in response to PC infection, probably due to depressed TNF-alpha production. Additionally, neonatal T cells are defective in the ability to migrate across endothelial cells.  相似文献   

9.
The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1alpha, TNFalpha and IFNgamma or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus.  相似文献   

10.
Calcific aortic valve disease (CAVD) is a chronic inflammatory condition and affects a large number of elderly people. Aortic valve interstitial cells (AVICs) occupy an important role in valvular calcification and CAVD progression. While pro-inflammatory mechanisms are capable of inducing the osteogenic responses in AVICs, the molecular interaction between pro-inflammatory and pro-osteogenic mechanisms remains poorly understood. This study tested the hypothesis that intercellular adhesion molecule-1 (ICAM-1) plays a role in mediating pro-osteogenic factor expression in human AVICs. AVICs were isolated from normal human aortic valves and cultured in M199 medium. Treatment with leukocyte function-associated factor-1 (LFA-1, an ICAM-1 ligand) up-regulated the expression of bone morphogenetic protein-2 (BMP-2) and resulted in increased alkaline phosphatase activity and formation of calcification nodules. Pre-treatment with lipopolysaccharide (LPS, 0.05 μg/ml) increased ICAM-1 levels on cell surfaces and exaggerated the pro-osteogenic response to LFA-1, and neutralization of ICAM-1 suppressed this response. Further, ligation of ICAM-1 by antibody cross-linking also up-regulated BMP-2 expression. Interestingly, LFA-1 elicited Notch1 cleavage and NF-κB activation. Inhibition of NF-κB markedly reduced LFA-1-induced BMP-2 expression, and inhibition of Notch1 cleavage with a γ-secretase inhibitor suppressed LFA-1-induced NF-κB activation and BMP-2 expression. Ligation of ICAM-1 on human AVICs activates the Notch1 pathway. Notch1 up-regulates BMP-2 expression in human AVICs through activation of NF-κB. The results demonstrate a novel role of ICAM-1 in translating a pro-inflammatory signal into a pro-osteogenic response in human AVICs and suggest that ICAM-1 on the surfaces of AVICs contributes to the mechanism of aortic valve calcification.  相似文献   

11.
In a previous study, ICAM-1-deficient knockout (KO) mice were able to recruit inflammatory cells into Pseudomonas aeruginosa-infected eyes and resolve the infection as well as wild-type (WT) mice. Based on this observation, it was hypothesized that ICAM-2 could serve as a surrogate receptor for leukocyte recruitment in lieu of ICAM-1. To test this hypothesis, ICAM-2 expression was first examined in both uninfected and P. aeruginosa-infected eyes (6 h postinfection) by immunohistochemistry and RT-PCR. Similar to ICAM-1, ICAM-2 was constitutively expressed on the vascular endothelium of the iris, ciliary body, and conjunctiva of uninfected eyes. Unlike ICAM-1, ICAM-2 was not expressed in the cornea nor upregulated following P. aeruginosa infection. The role of ICAM-2 in P. aeruginosa ocular infection was then addressed through a monoclonal antibody (MAb) blockade of ICAM-2 in infected ICAM-1 KO and WT mice. MAb blockade of ICAM-2 resulted in fewer infiltrating inflammatory cells (as ascertained by histopathology) in the anterior chamber of eyes of ICAM-1-KO and WT mice 24 h postinfection. However, a myeloperoxidase assay of infected corneas showed no statistical difference (P > 0.11) between the two groups in infiltrating PMN. Collectively, these data suggest that constitutively expressed ICAM-2 does play a role in recruiting inflammatory cells into the anterior chamber of the eye during P. aeruginosa infection. Furthermore, inflammatory cell recruitment into the P. aeruginosa-infected cornea appears to be mediated by an ICAM-independent pathway.  相似文献   

12.
Yang PY  Rui YC 《Life sciences》2003,74(4):471-480
Macrophage-derived foam cells seem to play an important role during inflammatory response of atherosclerosis, in which the overexpression of intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) are associated with the early and later pathological changes in foam cell formation. In this study, we investigated the expression kinetics of ICAM-1 and VEGF in macrophage-derived foam cells. The foam cell model was established through incubating the human monocyte line (U937 cells) with oxidized-low density lipoprotein (ox-LDL). Up-regulated expressions of ICAM-1 and VEGF were analyzed in protein and mRNA levels in U937 foam cells by flow cytometry, ELISA, and Northern blot. Kinetic studies showed the deferent kinds of expression curves in dose response and time course. The expression dose-kinetics demonstrated that the ICAM-1 showed the peak expression induced by ox-LDL 50 mg/L, while VEGF levels increased in a dose-dependent manner with the maximum level induced by ox-LDL 200 mg/L. Time-kinetic studies revealed that the ICAM-1 levels showed the peak expression in 12 h while VEGF expression increased in a time-dependent manner with the maximum level in 48 h. These results proved that both ICAM-1 and VEGF expressions were enhanced in the macrophage-derived foam cells, but ICAM-1 expression increased earlier than the up-regulation of VEGF; low dose of ox-LDL mainly up regulated ICAM-1 expression, while high dose mainly increased the VEGF expression.  相似文献   

13.
14.
We determined whether human peripheral blood mononuclear cells (PBMCs) could be used to analyze clock genes by studying their mRNA expressions in human bronchial epithelium (BEAS-2B) and PBMCs following stimulation by the glucocorticoid homologue dexamethasone (DEX) in vitro. PBMCs were obtained at 10:00 h from two diurnally active (∼07:00 to 23:00 h) healthy volunteers and were evaluated for hPer1 mRNA expression following DEX stimulation in vitro using real time-PCR analysis. DEX stimulation of human BEAS-2B cells and PBMCs in vitro led to a remarkable increase of hPer1 mRNA. The glucocorticoid rapidly affected the expression of hPer1 mRNA in PBMCs, suggesting that human PBMCs may be a useful surrogate marker for the investigation of drug effects on clock genes.  相似文献   

15.
Increased intracellular adhesion molecule 1 (ICAM-1) expression and enhanced monocyte recruitment to the endothelium are critical steps in the early development of atherosclerosis. The 15-lipoxygenase 1 (15-LOX1) pathway can generate several proinflammatory eicosanoids that are known to enhance ICAM-1 expression within the vascular endothelium. Oxidative stress can exacerbate endothelial cell inflammatory responses by modifying arachidonic acid metabolism through the 15-LOX1 pathway. Because selenium (Se) influences the oxidant status of cells and can modify the expression of eicosanoids, we investigated the role of this micronutrient in modifying ICAM-1 expression as a consequence of enhanced 15-LOX1 activity. Se supplementation reduced ICAM-1 expression in bovine aortic endothelial cells, an effect that was reversed with 15-LOX1 overexpression or treatment with exogenous 15-hydroperoxyoctadecadienoic acid (15-HPETE). ICAM-1 expression increased proportionately when intracellular15-HPETE levels were allowed to accumulate. However, changes in intracellular 15-HETE levels did not seem to affect ICAM-1 expression regardless of Se status. Our results indicate that Se supplementation can reduce 15-HPETE-induced expression of ICAM-1 by controlling the intracellular accumulation of this fatty acid hydroperoxide in endothelial cells.  相似文献   

16.
17.
To investigate the possible role of mast cells (MC) in regulating leukocyte adhesion to vascular endothelial cells (EC), microvascular and macrovascular EC were exposed to activated MC or MC conditioned medium (MCCM). Expression of intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) on EC was monitored. Incubation of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) with activated MC or MCCM markedly increased ICAM-1 and VCAM-1 surface expression, noted as éarly as 4 hr. Maximal levels were observed at 16 hr followed by a general decline over 48 hr. A dose-dependent response was noted using incremental dilutions of MCCM or by varying the number of MC in coculture with EC. At a ratio as low as 1:1,000 of MC:EC, increased ICAM-1 was observed. The ICAM-1 upregulation by MCCM was >90% neutralized by antibody to tumor necrosis factor alpha (TNF-α), suggesting that MC release of this cytokine contributes significantly to inducing EC adhesiveness. VCAM-1 expression enhanced by MCCM was partly neutralized (70%) by antibody to TNF-α; thus other substances released by MC may contribute to VCAM-1 expression. Northern blot analysis demonstrated MCCM upregulated ICAM-1 and VCAM-1 mRNA in both HDMEC and HUVEC. To evaluate the function of MCCM-enhanced EC adhesion molecules, T cells isolated from normal human donors were used in a cell adhesion assay. T-cell binding to EC was increased significantly after exposure of EC to MCCM, and inhibited by antibodies to ICAM-1 or VCAM-1. Intradermal injection of allergen in human atopic volunteers known to develop late-phase allergic reactions led to marked expression of both ICAM-1 and VCAM-1 at 6 hr, as demonstrated by immunohistochemistry. These studies indicate that MC play a critical role in regulating the expression of EC adhesion molecules, ICAM-1 and VCAM-1, and thus augment inflammatory responses by upregulating leukocyte binding. © 1995 Wiley-Liss Inc.  相似文献   

18.
19.
The airway epithelium is the primary target of inhaled pathogens such as human rhinovirus (HRV). Airway epithelial cells express ICAM-1, the major receptor for HRV. HRV binding to ICAM-1 mediates not only viral entry and replication but also a signaling cascade that leads to enhanced inflammatory mediator production. The specific signaling molecules and pathways activated by HRV-ICAM-1 interactions are not well characterized, although studies in human airway epithelia implicate a role for the p38 MAPK in HRV-induced cytokine production. In the current study, we report that Syk, an important immunoregulatory protein tyrosine kinase, is highly expressed by primary and cultured human airway epithelial cells and is activated in response to infection with HRV16. Biochemical studies revealed that ICAM-1 engagement by HRV and cross-linking Abs enhanced the coassociation of Syk with ICAM-1 and ezrin, a cytoskeletal linker protein. In polarized airway epithelial cells, Syk is diffusely distributed in the cytosol under basal conditions but, following engagement of ICAM-1 by cross-linking Abs, is recruited to the plasma membrane. The enhanced Syk-ICAM-1 association following HRV exposure is accompanied by Syk phosphorylation. ICAM-1 engagement by HRV and cross-linking Abs also induced phosphorylation of p38 in a Syk-dependent manner, and conversely, knockdown of Syk by short interfering (si)RNA substantially diminished p38 activation and IL-8 gene expression. Taken together, these observations identify Syk as an important mediator of the airway epithelial cell inflammatory response by modulating p38 phosphorylation and IL-8 gene expression following ICAM-1 engagement by HRV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号