首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steroid hormones play an important role in the regulation of numerous physiological responses, but the mechanisms that enable these systemic signals to trigger specific cell changes remain poorly characterized. Recent studies of Drosophila illustrate several important features of steroid-regulated programmed cell death. A single steroid hormone activates both cell differentiation and cell death in different tissues and at multiple stages during development. While several steroid-regulated genes are required for cell execution, most of these genes function in both cell differentiation and cell death, and require more specific factors to kill cells. Genes that regulate apoptosis during Drosophila embryogenesis are induced by steroids in dying cells later in development. These apoptosis genes likely function downstream of hormone-induced factors to serve a more direct role in the death response. This article reviews the current knowledge of steroid signaling and the regulation of programmed cell death during development of Drosophila.  相似文献   

2.
The major cell death pathways are apoptosis and autophagy-type cell death in Drosophila. Overexpression of proapoptotic genes in developing imaginal tissues leads to the activation of caspases and apoptosis, but most of them show no effect on the polytenic cells of the fat body during the last larval stage. Surprisingly, overexpression of Hid induces caspase-independent autophagy in the fat body, as well as in most other larval tissues tested. Hid mutation results in inhibition of salivary gland cell death, but the disintegration of the larval midgut is not affected. Electron microscopy shows that autophagy is normally induced in fat body, midgut and salivary gland cells of homozygous mutant larvae, suggesting that Hid is not required for autophagy itself. Constitutive expression of the caspase inhibitor p35 produces identical phenotypes. Our results show that the large, post-mitotic larval cells do not react or activate autophagy in response to the same strong apoptotic stimuli that trigger apoptosis in small, mitotically active imaginal disc cells.  相似文献   

3.
Physiological cell turnover is under the control of a sharp and dynamic balance of different homeostatic mechanisms such as the equilibrium between cell proliferation and cell death. These mechanisms play an important role in maintaining normal tissue function and architecture. It is well known that apoptosis is the prevalent mode of physiological cell loss in most tissues. Steroid hormones like glucocorticoids have been identified as key signals controlling cell turnover by modulating programmed cell death in a tissue- and cell-specific manner. In this sense, several reports have demonstrated that glucocorticoids are able to induce apoptosis in cells of the hematopoietic system such as monocytes, macrophages, and T lymphocytes. In contrast, they protect against apoptotic signals evoked by cytokines, cAMP, tumor suppressors, in glandular cells such as the mammary gland epithelia, endometrium, hepatocytes, ovarian follicular cells, and fibroblasts. Although several studies have provided significant information on hormone-dependent apoptosis in an specific tissue, a clearly defined pathway that mediates cell death in response to glucocorticoids in different cell types is still misunderstood. The scope of this review is held to those mechanisms by which glucocorticoids control apoptosis, emphasizing tissue-specific expression of genes that are involved in the apoptotic pathway.  相似文献   

4.
Apoptosis: Programmed cell death in health and disease   总被引:3,自引:0,他引:3  
Apoptosis is a normal physiological cell death process of eliminating unwanted cells from living organisms during embryonic and adult development. Apoptotic cells are characterised by fragmentation of nuclear DNA and formation of apoptotic bodies. Genetic analysis revealed the involvement of many death and survival genes in apoptosis which are regulated by extracellular factors. There are multiple inducers and inhibitors of apoptosis which interact with target cell specific surface receptors and transduce the signal by second messengers to programme cell death. The regulation of apoptosis is elusive, but defective regulation leads to aetiology of various ailments. Understanding the molecular mechanism of apoptosis including death genes, death signals, surface receptors and signal pathways will provide new insights in developing strategies to regulate the cell survival/death. The current knowledge on the molecular events of apoptotic cell death and their significance in health and disease is reviewed.  相似文献   

5.
Apoptosis is an important mode of cell death under both physiological and pathophysiological conditions. Numerous techniques are available for the study and quantitation of apoptosis in cell culture, but only few are useful when applied to complex tissues. Among these, the terminal transferase-mediated dUTP nick end-labeling (TUNEL) assay remains the most widely used technique. However, its specificity and sensitivity for the detection of apoptosis remain controversial. We developed a technique consisting of staining live cells and tissues with Hoechst 33342 and the vital dye propidium iodide (PI), followed by fixation and the TUNEL reaction. We demonstrate excellent retention of PI in necrotic cells after fixation. We also examined the distribution of TUNEL staining among necrotic and apoptotic cells in various models of cell injury in vitro and in vivo. We show that the sensitivity of the TUNEL varied between 61 and 90% in the models examined. The specificity exceeded 87% in all models but fell to 70% when a predominantly necrotic injury was induced. This novel and simple method will permit the determination of indices of sensitivity and specificity for the TUNEL assay in other tissues and experimental conditions.  相似文献   

6.
During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972) introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.  相似文献   

7.
Exposure of living systems to radiation results in a wide assortment of lesions, the most significant of is damage to genomic DNA which alter specific cell functions including cell proliferation. The radiation induced DNA damage investigation is one of the important area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes such as damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2 Gy proton exposed mouse brain tissues as compared to control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed cells undergo severe DNA damage which in turn destabilize the chromatin stability.  相似文献   

8.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

9.
昆虫变态发育过程中的细胞自噬和凋亡   总被引:1,自引:0,他引:1  
在昆虫变态期,幼虫组织发生退化或消亡,原因在于蜕皮甾醇激素(ecdysteroid),即通常所说的蜕皮激素,诱导这些组织的细胞发生了自噬(autophagy)和凋亡(apoptosis)的程序性细胞死亡(programmed cell death,PCD)。一般情况下,自噬途径构成一种饥饿应激适应性以避免细胞的死亡,表现为低水平Cvt泡(Cvt vesicle)和自噬体(autophagosome)对部分胞质溶胶、蛋白聚集体和细胞器的吞噬和降解。昆虫进入变态发育时,由于蜕皮激素的激活,由遗传级联系统调控的PCD机制被启动,低水平的常态自噬转入高水平的自噬并同时诱发凋亡,细胞进入不可逆的死亡,导致幼虫组织在变态期退化或消亡。对果蝇Drosophila变态期PCD机制中最重要的发现是:(1)在自噬发生的PI3KⅠ- Tor 和 PI3KⅢ的分子通路中,由自噬相关蛋白Atg1引发的高水平自噬能够诱导凋亡;(2)蜕皮激素诱导表达的βFTZ-F1,E93,BR-C,E74A等转录因子不但激活凋亡的Caspases通路,还能诱导自噬的发生。  相似文献   

10.
Apoptosis and necrosis are considered as conceptually distinct forms of cell death. Nevertheless, there is increasing evidence that classical apoptosis and necrosis represent only the extreme ends of a wide range of possible morphological and biochemical deaths. The two classical types of demise can occur simultaneously in tissues or cell cultures exposed to the same stimulus, and often the intensity of the same initial insult decides the prevalence of either apoptosis or necrosis. This suggests that, while some early events may be common to both types of cell death, a downstream controller may be required to direct cells towards the organised execution of apoptosis. We have recently shown that intracellular energy levels and mitochondrial function are rapidly compromised in necrosis, but not in apoptosis of neuronal cells. Then, we went on to show that pre-emptying human T cells of ATP switches the type of demise caused by two classic apoptotic triggers (staurosporin and CD95 stimulation) from apoptosis to necrosis. Conditions of controlled intracellular ATP depletion, which was obtained by blocking mitochondrial and/or glycolytic ATP generation, were used in combination with repletion of the cytosolic ATP pool with glucose to redirect the death program towards apoptosis or necrosis. At least two distinct steps, the typical nuclear degradation, and the expression of annexin V-recognisable determinants on the cell surface require sufficient ATP generation. This suggests that some upstream regulators of cell death may be common to both types of cell demise, whereas yet unknown downstream processes decide its shape and the implications for the neighbouring tissue.  相似文献   

11.
A screening system comprised of a randomized hybrid-ribozyme library has previously been used to identify pro-death genes in Fas-mediated apoptosis, and short sequence information of candidate genes from this system was previously reported by Kawasaki and Taira [H. Kawasaki, K. Taira, A functional gene discovery in the Fas-mediated pathway to apoptosis by analysis of transiently expressed randomized hybrid-ribozyme libraries, Nucleic Acids Res. 30 (2002) 3609-3614]. In this study, we have cloned the full-length of the candidate’s open reading frames and found that one of the candidates, referred to as MUDENG (Mu-2 related death-inducing gene), which is composed of 490 amino acids that contain the adaptin domain found in the μ2 subunit of APs related to clathrin-mediated endocytosis, is able to induce cell death by itself. Ectopic expression of MUDENG induced cell death in Jurkat T cells and HeLa cells. In addition, when MUDENG expression was evaluated by immnuohistochemical staining, it was found in most tissues, including the intestine and testis. Furthermore, MUDENG appears to be evolutionary conserved from mammals to amphibians, suggesting that it may have a common role in cell death. Taken together, these results suggest that MUDENG is likely to play an important role in cell death in various tissues.  相似文献   

12.
Expression of determined Asn-bound glycans (N-glycans) in cell surface glycoproteins regulates different processes in tumour cell biology. Specific patterns of N-glycosylation are displayed by highly metastatic cells and it has been shown that inhibition of N-glycan processing restrains cell proliferation and induces cell death via apoptosis. However, the mechanisms by which different N-glycosylation states may regulate cell viability and growth are not understood. Since malignant cells express high levels of intracellular glutathione (GSH) and a reduction of intracellular GSH induces cell death via apoptosis, we investigated whether GSH was involved in the induction of apoptosis by removal of cell surface N-glycans. We found that removal of N-glycans from cell surface proteins by treating the rhabdomyosarcoma cell line S4MH with tunicamycin or N-glycosidase resulted in a reduction in intracellular GSH content and cell death via apoptosis. Moreover, GSH depletion caused by the specific inhibitor of GSH synthesis BSO induced apoptosis in S4MH cells. This data indicates that adequate N-glycosylation of cell surface glycoproteins is required for maintenance of intracellular GSH levels that are necessary for cell survival and proliferation.  相似文献   

13.
Activated T-cells are susceptible to induction of apoptosis or programmed cell death in response to ligation of several cell surface structures, including CD2, CD3, and CD95/Fas. These mechanisms may be important in the regulation of immune responses and in prevention of autoimmunity. We used flow cytometric quantitation of DNA strand breaks to detect T-cells committed to programmed cell death. Activated human peripheral blood T-lymphocytes, and freshly isolated human thymocytes underwent apoptosis when exposed to dexamethasone or to monoclonal antibodies directed at CD2 or CD3. Interleukin-2 reduced spontaneous or dexamethasone-induced apoptosis, but augmented apoptosis due to ligation of CD2. A neutralizing anti-Fas antibody reduced the amount of DNA strand breakage, not only in T-cells exposed to antibodies to CD2 or CD3, but also in dexamethasone-treated cultures. In vivo activated T-cells, from inflammatory synovial fluids, were sensitive to immediate induction of DNA strand breaks without prior in vitro activation by lectin and IL-2. Taken together, the results indicated that: 1. Human lymphocytes, like murine thymocytes, are sensitive to glucocorticoid-induced apoptosis, as well as to programmed cell death triggered through surface receptors; 2. The effects of IL-2 on T-cell apoptosis depend on the apoptotic stimulus; 3. Fas/Fas ligand interactions may be relevant for both membrane receptor and glucocorticoid-induced cell death; and 4. Induction of T-cell apoptosis may be important in therapeutic effects of glucocorticoids in human disease.  相似文献   

14.
Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad?   总被引:12,自引:0,他引:12  
Acute pancreatitis is a disease of variable severity in which some patients experience mild, self-limited attacks while others manifest a severe, highly morbid, and frequently lethal attack. The events that regulate the severity of acute pancreatitis are, for the most part, unknown. Several recent studies have suggested that the acinar cell response to injury may be an important determinant of disease severity. In these studies, mild acute pancreatitis was found to be associated with extensive apoptotic acinar cell death while severe acute pancreatitis was found to involve extensive acinar cell necrosis but very little acinar cell apoptosis. These observations have led to the hypothesis that apoptosis might be a favorable response to acinar cell and that interventions which favor induction of apoptotic, as opposed to necrotic, acinar cell death might reduce the severity of an attack of acute pancreatitis. This review aims to discuss our current understanding of the contribution of acinar cell apoptosis to the severity of acute pancreatitis.  相似文献   

15.
Apoptosis is an important physiological process that promotes tissue homeostasis by eliminating unnecessary or malfunctioning cells. Abnormality in this process contributes to tumorigenesis, as well as the resistance to cancer treatment by radiation and chemotherapy. Restoration of normal apoptosis would not only promote cancer cell death and halt tumor progression, but also increase the response to many current cancer therapies. Although apoptosis induction is an important principle of currently used radiation and chemotherapy treatment, uncovering the mechanisms that govern this process, and which are lost during transformation, represents an important direction for realizing improved therapies for the future. This article first briefly reviews aspects of current discovery strategies for new anticancer therapeutics based on intervening in cell death pathways, and then discusses in more detail several cancer-relevant death pathways, which are disabled during transformation and which can be targeted therapeutically. These include anoikis/cell adhesion; energy metabolism and the unfolded protein response. Finally, we introduce a new concept, which utilizes cancer-specific apoptosis induced by oncolytic viruses. The discussion of these topics involves novel targets, compounds and virotherapy.  相似文献   

16.
Proteases of the caspase family play key roles in the execution of apoptosis. In Drosophila there are seven caspases, but their roles in cell death have not been studied in detail due to a lack of availability of specific mutants. Here, we describe the generation of a specific mutant of the Drosophila gene encoding DRONC, the only caspase recruitment domain (CARD) containing apical caspase in the fly. dronc mutants are pupal lethal and our studies show that DRONC is required for many forms of developmental cell deaths and apoptosis induced by DNA damage. Furthermore, we demonstrate that DRONC is required for the autophagic death of larval salivary glands during metamorphosis, but not for histolysis of larval midguts. Our results indicate that DRONC is involved in specific developmental cell death pathways and that in some tissues, effector caspase activation and cell death can occur independently of DRONC.  相似文献   

17.
Cell nucleus and DNA fragmentation are not required for apoptosis   总被引:30,自引:3,他引:27       下载免费PDF全文
Apoptosis is the predominant form of cell death and occurs under a variety of physiological and pathological conditions. Cells undergoing apoptotic cell death reveal a characteristic sequence of cytological alterations including membrane blebbing and nuclear and cytoplasmic condensation. Activation of an endonuclease which cleaves genomic DNA into internucleosomal DNA fragments is considered to be the hallmark of apoptosis. However, no clear evidence exists that DNA degradation plays a primary and causative role in apoptotic cell death. Here we show that cells enucleated with cytochalasin B still undergo apoptosis induced either by treatment with menadione, an oxidant quinone compound, or by triggering APO-1/Fas, a cell surface molecule involved in physiological cell death. Incubation of enucleated cells with the agonistic monoclonal anti-APO-1 antibody revealed the key morphological features of apoptosis. Moreover, in non-enucleated cells inhibitors of endonuclease blocked DNA fragmentation, but not cell death induced by anti-APO-1. These data suggest that DNA degradation and nuclear signaling are not required for induction of apoptotic cell death.  相似文献   

18.
Apoptosis or programmed cell death is a key function in regulating skin development, homeostasis and tumorigenesis. The epidermis is exposed to various external stimuli and one of the most important is UV radiation. The UVA and UVB spectra differ in their biological effects and in their depth of penetration through the skin layers. UVB rays are absorbed directly by DNA which results in its damage. UVA can also cause DNA damage but primarily by the generation of reactive oxygen species. By eliminating photodamaged cells, apoptosis has an important function in the prevention of epidermal carcinogenesis. UV-induced apoptosis is a complex event involving different pathways. These include: 1. activation of the tumour suppressor gene p53; 2. triggering of cell death receptors directly by UV or by autocrine release of death ligands; 3. mitochondrial damage and cytochrome C release. The extrinsic pathway through death receptors such as fibroblast-associated, tumour necrosis factor receptor and TNF related apoptosis inducing ligand receptor activate caspase cascade. The intrinsic or mitochondrial pathway of apoptosis is regulated by the Bcl-2 family of proteins, anti-apoptotic (Bcl-2, Bcl-xl, Bcl-w) and the pro-apoptotic (Bax, Bak, Bid). The balance between the pro-apoptotic and anti-apoptotic proteins determines cell survival or death. We discuss recent findings in the molecular mechanisms of UV induced apoptosis.  相似文献   

19.
Akt is known to be activated in the rheumatoid synovial tissues. We examined here functional role of Akt during tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis in rheumatoid synovial cells. Rheumatoid synovial cells in vitro were rapidly committed to apoptosis in response to TRAIL in mitochondria-dependent manner whereas Akt and extracellular signal-regulated kinase (ERK) were also phosphorylated. TRAIL-mediated apoptosis in synovial cells was significantly increased through inactivation of Akt by LY294002, however, that process was not so changed by adding ERK inhibitor, PD98059. Platelet-derived growth factor (PDGF) clearly phosphorylated both Akt and ERK in synovial cells, and PDGF pretreatment markedly suppressed TRAIL-mediated synovial cell apoptosis. The use of not PD98059 but LY294002 abrogated PDGF-mediated inhibitory effect toward TRAIL-induced apoptosis in synovial cells. The above protective effect of Akt was confirmed by the use of short interfering RNA (siRNA)-directed inhibition of Akt. Our data suggest that Akt is an endogenous inhibitor during TRAIL-mediated synovial cell apoptotic pathway, which may explain that synovial cells in situ of the rheumatoid synovial tissues are resistant toward apoptotic cell death in spite of death receptor expression.  相似文献   

20.
An important feature of meconium-instilled newborn lungs is an inflammatory response and apoptotic cell death. It was recently demonstrated by our group and supported by several other investigators in a relatively short period of time. Apoptosis exists also in healthy lungs, but in meconium-instilled lungs its level is usually dramatically higher. Apoptosis is characterized by loss of cell function, decrease in cell size, and its morphology. Apoptosis plays an important role in normal cell life, but increased levels of apoptosis induce great damage for any tissues. Apoptosis in the lungs has been greatly overlooked for the past decade, and meconium-induced apoptosis is a relatively new event and not effectively studied at the present time. This Review summarized current knowledge regarding meconium-induced inflammation and apoptosis in newborn lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号