首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch gel electrophoresis was performed to study polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 366 local old barley accessions from Iran and Central Asian countries, including Turkmenistan, Uzbekistan, Tajikistan (Mountain Badahsan), and Kirgizia. In total, 60 alleles with frequencies of 0.0003–0.2818 were observed for the Hrd A locus, 106 alleles with frequencies of 0.0003–0.1603 were observed for the Hrd B locus, and five alleles with frequencies of 0.0164–0.4131 were observed for the Hrd F locus. The alleles and allele frequencies displayed irregular distributions in barley populations of the above countries. Cluster analysis of the matrix of allele frequencies in populations from known collection sites revealed a cluster structure of local barley populations within each country. Local populations formed five differently sized clusters in Iran, six in Turkmenistan, three in Uzbekistan, and three in Kirgizia. The variation and allele frequency distribution of the hordein-coding loci in Iran and Central Asian countries were assumed to result from the introduction and spreading of barley forms via migrations of husbandmen.  相似文献   

2.
In this study, starch gel electrophoresis was used to examine polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 201 accessions of barley landraces from China (including Tibet), Nepal, Pakistan, and India. Altogether, 50 alleles with the frequencies of 0.001?C0.2269 were determined for the Hrd A locus, 65 alleles with the frequencies of 0.001?C0.1612 were determined for the Hrd B locus, and five alleles with the frequencies of 0.001?C0.4537 were determined for the Hrd F locus. In barley populations from these countries, irregular distribution of alleles and allele frequencies was observed. Cluster analysis of the matrix of allele frequencies in populations from known sampling sites revealed cluster structure of local barley populations within each country. Local populations formed five differently sized clusters in Nepal, four such clusters in India, three clusters in China, and three clusters, in Pakistan. These results suggest that variation and allele frequency distribution of the hordein-coding loci in the countries of Eastern Asia resulted from the introduction and spreading of barley forms through the husbandmen migrations.  相似文献   

3.
Polymorphism of hordeins encoded by the HrdA, Hrd B, and Hrd Floci was analyzed in 84 accessions of local barley (Hordeum vulgare L.) varieties from major agricultural regions of Afghanistan using starch gel electrophoresis. Forty alleles of the Hrd A locus with the frequencies from 0.12 to 32.73%, 62 alleles of the Hrd B locus with the frequencies from 0.12 to 14.29%, and five alleles of the Hrd Flocus with the frequencies from 0.59 to 32.15% have been identified. The conclusion about genetic similarity of barley populations from different regions of Afghanistan is made on the basis of cluster analysis of the matrix of allele frequencies in barley populations from 31 localities. The local barley populations form four unequal clusters. The largest cluster I includes populations from 14 localities of Afghanistan. The second largest cluster IV consists of populations from ten localities, and clusters II and III comprise populations from four and three localities, respectively. Each of the four clusters includes populations from different regions of northern and southern Afghanistan. Based on our results, we conclude that the diversity of hordein-coding loci and the distribution of their alleles among different regions of Afghanistan are the consequences of introduction of barley landraces and their distribution over trade routes.  相似文献   

4.
Polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci was analyzed in 84 accessions of local barley (Hordeum vulgare L.) varieties from major agricultural regions of Afghanistan using starch gel electrophoresis. Forty alleles of the Hrd A locus with the frequencies from 0.12 to 32.73%, 62 alleles of the Hrd B locus with the frequencies from 0.12 to 14.29%, and five alleles of the Hrd F locus with the frequencies from 0.59 to 32.15% have been identified. The conclusion about genetic similarity of barley populations from different regions of Afghanistan is made on the basis of cluster analysis of the matrix of allele frequencies in barley populations from 31 localities. The local barley populations form four unequal clusters. The largest cluster I includes populations from 14 localities of Afghanistan. The second largest cluster IV consists of populations from ten localities, and clusters II and III comprise populations from four and three localities, respectively. Each of the four clusters includes populations from different regions of northern and southern Afghanistan. Based on our results, we conclude that the diversity of hordein-coding loci and the distribution of their alleles among different regions of Afghanistan are the consequences of introduction of barley landraces and their distribution over trade routes.  相似文献   

5.
Pomortsev AA  Martynov SP  Lialina EV 《Genetika》2007,43(11):1542-1549
Starch gel electrophoresis has been used to study the polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 93 landrace specimens of barley assigned to 17 ancient provinces located in modem Turkey. Forty-five alleles of Hrd A with frequencies of 0.11-29.34%, 51 alleles of Hrd B with frequencies of 0.11-8.07%, and 5 alleles of Hrd F with frequencies of 0.75-41.29% have been detected. Cluster analysis of the matrix of allele frequencies has demonstrated that barley populations from different old provinces of Turkey are similar to one another. Cluster structure of local barley populations has been found, most populations (82%) falling into three clusters. The first cluster comprises barley populations from six provinces (Thracia, Bithynia, Pontus, Lydia, Cappadocia, and Armenia); the second cluster, populations from five provinces (Paphlagonia, Galatia, Lycaonia, Cilicia, and Mesopotamia); and the third one, populations from three provinces (Phrygia, Karia, and Lycia). Barley populations from Mysia, Pamphlya, and Syria do not fall in any cluster.  相似文献   

6.
Electrophoresis in starch gel has been used to study the polymorphism of hordeins encoded by loci Hrd A, Hrd B, and Hrd F in 140 local barley populations from the Near East, including 60, 34, 33, 8, and 5 populations from Syria, Jordan, Iraq, Palestine, and Israel, respectively. Fifty-seven Hrd A, 87 Hrd B, and 5 Hrd F alleles have been found. The alleles of these loci considerably differ in frequencies and distribution in populations from different Near Eastern countries. Cluster analysis of the matrix of the frequencies of hordein locus alleles in barley populations from the Near East, North Africa, Ethiopia, and South Arabia has yielded two clusters. The first cluster includes barley populations from Israel, Palestine, Morocco, Tunisia, Algeria, and Egypt; the second cluster, populations from Iraq, Syria, Jordan, Yemen, and Ethiopia.  相似文献   

7.
Starch gel electrophoresis was performed to study the polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 211 varieties of spring barley. For 41 of these varieties, the genetic formulas were established for the first time. In the two samples of varieties, the comparative analysis of allelic diversity and allele frequencies of hordein-coding loci was carried out. The first sample consisted of 101 spring barley varieties approved for the use on the territory of the Russian Federation in 1999, while the second sample included 160 spring barley varieties that were approved in 2014; 49 of these varieties were common for both samples. It is demonstrated that the current tendency to reduction of the proportion of heterogeneous spring barley varieties is mainly due to the introduction of foreign varieties homogeneous for the hordein-coding loci. At the same time, there is an increase in polymorphism of hordein-coding loci in modern spring barley varieties. The number of alleles for the Hrd A locus increased by five alleles, and for the Hrd B locus, by nine alleles. Along with the alleles recorded earlier in barley landrace populations and varieties bred in 20th century, three novel alleles of the Hrd A locus and four alleles of the Hrd B locus were identified. The number of alleles of the Hrd F locus remained unchanged (four), and the changes in their frequencies were small. At the same time, the changes in frequency observed for some alleles of the Hrd A and Hrd B loci were statistically significant. All newly identified alleles of hordein-coding loci were found with low frequencies (from 0.003 to 0.006), so despite the increased number of alleles, no statistically significant increase in genetic diversity in terms of μ and PIC indices was observed.  相似文献   

8.
Electrophoresis in starch gel has been used to study the polymorphism of hordeins encoded by loci Hrd A, Hrd B, and Hrd F in 140 local barley populations from the Near East, including 60, 34, 33, 8, and 5 populations from Syria, Jordan, Iraq, Palestine, and Israel, respectively. Fifty-seven Hrd A, 87 Hrd B, and 5 Hrd F alleles have been found. The alleles of these loci considerably differ in frequencies and distribution in populations from different Near Eastern countries. Cluster analysis of the matrix of the frequencies of alleles of hordei-coding locus alleles in barley populations from the Near East, North Africa, Ethiopia, and South Arabia has yielded two clusters. The first cluster includes barley populations from Israel, Palestine, Morocco, Tunisia, Algeria, and Egypt; the second cluster, populations from Iraq, Syria, Jordan, Yemen, and Ethiopia.  相似文献   

9.
Starch gel electrophoresis has been used to study the polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 93 landrace specimens of barley assigned to 17 ancient provinces located in modern Turkey. Forty-five alleles of Hrd A with frequencies of 0.11–29.34%, 51 alleles of Hrd B with frequencies of 0.11–8.07%, and 5 alleles of Hrd F with frequencies of 0.75–41.29% have been detected. Cluster analysis of the matrix of allele frequencies has demonstrated that barley populations from different old provinces of Turkey are similar to one another. Cluster structure of local barley populations has been found, most populations (82%) falling into three clusters. The first cluster comprises barley populations from six provinces (Thracia, Bithynia, Pontus, Lydia, Cappadocia, and Armenia); the second cluster, populations from five provinces (Paphlagonia, Galatia, Lycaonia, Cilicia, and Mesopotamia); and the third one, populations from three provinces (Phrygia, Karia, and Lycia). Barley populations from Mysia, Pamphlya, and Syria do not fall in any cluster.  相似文献   

10.
Using starch gel electrophoresis, we examined polymorphism of hordein encoded by loci Hrd A, Hrd B, and Hrd F in 77 accessions of local barley varieties from North African countries (9 from Marocco, 22 from Algeria, 7 from Tunisia, and 39 from Egypt). For loci Hrd A, Hrd B, and Hrd F, respectively 35, 43, and 5 alleles were found. The existence of families of blocks of hordein components encoded by Hrd A and Hrd B was demonstrated. The estimation of genetic distances and cluster analysis showed similarity of barley populations from different North African countries with regard to alleles of the hordein-coding loci. We suggest that polymorphism at the hordein-coding loci in the populations examined has been mainly formed beyond North Africa, where barley has been repeatedly introduced. Apparently, the examined populations from Ethiopia and Egypt are not directly associated.  相似文献   

11.
Pomortsev AA  Lialina EV 《Genetika》2007,43(5):660-667
Electrophoresis in starch gel was used to study the polymorphism of hordeins controlled by loci Hrd A, Hrd B, and Hrd F in 89 samples of the local barleys from South Arabia (Yemen). Overall, 36 alleles were detected for locus Hrd A; 48 alleles, for Hrd B; and 5 alleles, for Hrd F. The existence of the blocks of hordein components controlled by loci Hrd A and Hrd B was demonstrated. Calculation of genetic distances allows us to conclude that the barley populations from Yemen and Ethiopia are more similar compared with the populations from Egypt. This confirms the hypothesis of Bakhteev on the origin of Ethiopian barleys.  相似文献   

12.
Using starch gel electrophoresis, we examined polymorphism of hordein encoded by loci Hrd A, Hrd B, and Hrd F in 77 accessions of local barley varieties from Northern African countries (9 from Marocco, 22 from Algeria, 7 from Tunisia, and 39 from Egypt). For loci Hrd A, Hrd B, andHrd F, respectively 35, 43, and 5 alleles were found. The existence of families of blocks of hordein components encoded by Hrd A and Hrd Bwas demonstrated. The estimation of genetic distances and cluster analysis showed similarity of barley populations from different Northern African countries with regard to alleles of the hordein-coding loci. We suggest that polymorphism at the hordein-coding loci in the populations examined has been mainly formed beyond Northern Africa, where barley has been repeatedly introduced. Apparently, the examined populations from Ethiopia and Egypt are not directly associated.  相似文献   

13.
Genetic diversity in 403 morphologically distinct landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers from regions of medium to high recombination in the barley genome. The seven polymorphic SSR markers representing each of the chromosomes chosen for the study revealed a high level of allelic diversity among the landraces. Genetic richness was highest in those from India, followed by Pakistan while it was lowest for Uzbekistan and Turkmenistan. Out of the 50 alleles detected, 15 were unique to a geographic region. Genetic diversity was highest for landraces from Pakistan (0.70 ± 0.06) and lowest for those from Uzbekistan (0.18 ± 0.17). Likewise, polymorphic information content (PIC) was highest for Pakistan (0.67 ± 0.06) and lowest for Uzbekistan (0.15 ± 0.17). Diversity among groups was 40% compared to 60% within groups. Principal component analysis clustered the barley landraces into three groups to predict their domestication patterns. In total 51.58% of the variation was explained by the first two principal components of the barley germplasm. Pakistan landraces were clustered separately from those of India, Iran, Nepal and Iraq, whereas those from Turkmenistan and Uzbekistan were clustered together into a separate group.  相似文献   

14.
A A Pomortsev 《Genetika》2001,37(10):1371-1382
Using starch gel electrophoresis, polymorphism of hordein-encoding loci Hrd A, Hrd B, and Hrd F was studied in 147 accessions of local Ethiopian barley varieties. Loci Hrd A, Hrd B, and Hrd F were shown to have 26, 36, and 4 alleles, respectively. The allele frequencies in the collection examined varied from 0.17 to 45.72%. For loci Hrd A and Hrd B, families of blocks of hordein components were found. Based on the allele frequencies and their combinations at loci Hrd A and Hrd B as well as the numbers of families of component blocks in hordeins A and B, we identified genotypes that could be considered as the most ancient in Ethiopia. A catalog of hordein variant encoded by these loci was created. The list of hordein genetic formulas for the studied accessions is presented.  相似文献   

15.
The extent and structure of genetic variation in 720 individualsrepresenting 36 populations of wild barley, Hordeum spontaneum,from Central Asia (Turkmenistan) were determined using starchgel electrophoresis of eight water soluble leaf proteins encodedby 13 loci. The populations were grouped into seven ecogeographicregions. The study found: (a) a similar amount of within populationgenetic diversity (He = 0.106), but lower total genetic diversity(HT = 0.166) to that reported for Middle East populations ofH. spontaneum; (b) of the total genetic diversity, 61% was attributableto variation within populations, 27% between populations ofa region, and 12% among regions; (c) of the 42 alleles found,11 were ubiquitous, 22 were widespread and common, three localand common and seven local and rare; (d) there was a poor correlationbetween population genetic and geographic distances; and (e)the frequencies of only a few alleles correlated significantlywith climatic or geographic parameters. The extent and structureof genetic variation of Turkmenian populations, which representthe Central Asian part of the species' range, were significantlydifferent in some important aspects from Middle Eastern andeastern Mediterranean populations. The mosaic pattern of geneticvariation found in wild barley in the Middle East is less pronouncedin populations from Central Asia where there is less geneticdifferentiation among populations and regions, and more ubiquitousor common and fewer localized alleles. Copyright 2001 Annalsof Botany Company Allozyme, Central Asia, genetic diversity, Hordeum spontaneum, wild barley  相似文献   

16.
Entomological Review - A Central Asian species Parexochomussemenovi (Wse.) is recorded for Russia (southern Tuva), Turkey, Turkmenistan and northwestern Uzbekistan (Republic of Karakalpakstan) for...  相似文献   

17.
Electrophoresis in starch gel was used to study the polymorphism of hordeins controlled by loci Hrd A, Hrd B, and Hrd F in 89 accessions of the local barleys from South Arabia (Yemen). Overall, 36 alleles were detected for locus Hrd A; 48 alleles, for Hrd B; and 5 alleles, for Hrd F. The existence of the blocks of hordein components controlled by loci Hrd A and Hrd B was demonstrated. Calculation of genetic distances allows us to conclude that the barley populations from Yemen and Ethiopia are more similar compared with the populations from Egypt. This confirms the hypothesis of Bakhteev on the origin of Ethiopian barleys.  相似文献   

18.
Hordein Polymorphism in Ethiopian Barley   总被引:1,自引:0,他引:1  
Using starch gel electrophoresis, polymorphism of hordein-encoding loci Hrd A, Hrd B, and Hrd Fwas studied in 147 accessions of local Ethiopian barley cultivars. Loci Hrd A, Hrd B, and Hrd Fwere shown to have 26, 36, and 4 alleles, respectively. The allele frequencies in the collection examined varied from 0.17 to 45.72%. For loci Hrd Aand Hrd B, families of blocks of hordein components were found. Based on the allele frequencies and their combinations at loci Hrd Aand Hrd Bas well as the numbers of families of component blocks of hordeins A and B, we identified genotypes that could be considered as the most ancient in Ethiopia. A catalog of hordein variant encoded by these loci was created. The list of hordein genetic formulas for the studied accessions is presented.  相似文献   

19.
Goitered gazelles, Gazella subgutturosa, exist in arid and semiarid regions of Asia from the Middle to the Far East. Although large populations were present over a vast area until recently, a decline of the population as a result of hunting, poaching, and habitat loss led to the IUCN classification of G. subgutturosa as “vulnerable." We examined genetic diversity, structure, and phylogeny of G. subgutturosa using mitochondrial cytochrome b sequences from 18 geographically distant populations in Iran. The median‐joining network of cyt b haplotypes indicated that three clades of goitered gazelles can be distinguished: a Middle Eastern clade west of the Zagros Mountains (and connected to populations in Turkey and Iraq), a Central Iranian clade (with connection to Azerbaijan), and an Asiatic clade in northeastern Iran (with connection to Turkmenistan, Uzbekistan, and other Asian countries as far as northeastern China and Mongolia). Based on our results, we argue that Iran is the center of diversification of goitered gazelles, due to the presence of large mountain ranges and deserts that lead to the separation of populations. In accordance with previous morphological studies, we identified the Asiatic clade as the subspecies G. s. yarkandensis, and the other two clades as the nominate form G. s. subgutturosa. The new genetic information for goitered gazelles in Iran provides the basis for future national conservation programs of this species.  相似文献   

20.
Eleven Southern African populations (representing European, Asian and Negroid populations) have been typed for the first locus phosphoglucomutase (PGM1) using isoelectric focusing (pH range 5.0-8.0) in acrylamide gels. The gene frequencies of the four common alleles at this locus in these populations were compared to those found previously in European and Negroid populations. Marked differences in gene frequencies were observed: Negroes have a lower PGM1(2-) compared with Caucasoids due to a lower PGM1(2-) frequency, Indians a relatively high PGM1(2) due to a higher frequency of the PGM1(2+) allele. The Afrikaans and Ashkenazim do not differ appreciably from their European counterparts. The appearances of the rarer PGM1(6) and PGM1(7) alleles on isoelectric focusing are described and some kinetic properties examined. The PGM2(2-1), or 'Atkinson' phenotype, can also be detected with this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号